Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 7555, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37985764

RESUMEN

Macrophages sense changes in the extracellular matrix environment through the integrins and play a central role in regulation of the reparative response after myocardial infarction. Here we show that macrophage integrin α5 protects the infarcted heart from adverse remodeling and that the protective actions are associated with acquisition of an angiogenic macrophage phenotype. We demonstrate that myeloid cell- and macrophage-specific integrin α5 knockout mice have accentuated adverse post-infarction remodeling, accompanied by reduced angiogenesis in the infarct and border zone. Single cell RNA-sequencing identifies an angiogenic infarct macrophage population with high Itga5 expression. The angiogenic effects of integrin α5 in macrophages involve upregulation of Vascular Endothelial Growth Factor A. RNA-sequencing of the macrophage transcriptome in vivo and in vitro followed by bioinformatic analysis identifies several intracellular kinases as potential downstream targets of integrin α5. Neutralization assays demonstrate that the angiogenic actions of integrin α5-stimulated macrophages involve activation of Focal Adhesion Kinase and Phosphoinositide 3 Kinase cascades.


Asunto(s)
Integrina alfa5 , Infarto del Miocardio , Ratones , Animales , Integrina alfa5/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Macrófagos/metabolismo , Ratones Noqueados , ARN/metabolismo
2.
Circulation ; 148(11): 882-898, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37350296

RESUMEN

BACKGROUND: Pericytes have been implicated in tissue repair, remodeling, and fibrosis. Although the mammalian heart contains abundant pericytes, their fate and involvement in myocardial disease remains unknown. METHODS: We used NG2Dsred;PDGFRαEGFP pericyte:fibroblast dual reporter mice and inducible NG2CreER mice to study the fate and phenotypic modulation of pericytes in myocardial infarction. The transcriptomic profile of pericyte-derived cells was studied using polymerase chain reaction arrays and single-cell RNA sequencing. The role of transforming growth factor-ß (TGF-ß) signaling in regulation of pericyte phenotype was investigated in vivo using pericyte-specific TGF-ß receptor 2 knockout mice and in vitro using cultured human placental pericytes. RESULTS: In normal hearts, neuron/glial antigen 2 (NG2) and platelet-derived growth factor receptor α (PDGFRα) identified distinct nonoverlapping populations of pericytes and fibroblasts, respectively. After infarction, a population of cells expressing both pericyte and fibroblast markers emerged. Lineage tracing demonstrated that in the infarcted region, a subpopulation of pericytes exhibited transient expression of fibroblast markers. Pericyte-derived cells accounted for ~4% of PDGFRα+ infarct fibroblasts during the proliferative phase of repair. Pericyte-derived fibroblasts were overactive, expressing higher levels of extracellular matrix genes, integrins, matricellular proteins, and growth factors, when compared with fibroblasts from other cellular sources. Another subset of pericytes contributed to infarct angiogenesis by forming a mural cell coat, stabilizing infarct neovessels. Single-cell RNA sequencing showed that NG2 lineage cells diversify after infarction and exhibit increased expression of matrix genes, and a cluster with high expression of fibroblast identity markers emerges. Trajectory analysis suggested that diversification of infarct pericytes may be driven by proliferating cells. In vitro and in vivo studies identified TGF-ß as a potentially causative mediator in fibrogenic activation of infarct pericytes. However, pericyte-specific TGF-ß receptor 2 disruption had no significant effects on infarct myofibroblast infiltration and collagen deposition. Pericyte-specific TGF-ß signaling was involved in vascular maturation, mediating formation of a mural cell coat investing infarct neovessels and protecting from dilative remodeling. CONCLUSIONS: In the healing infarct, cardiac pericytes upregulate expression of fibrosis-associated genes, exhibiting matrix-synthetic and matrix-remodeling profiles. A fraction of infarct pericytes exhibits expression of fibroblast identity markers. Pericyte-specific TGF-ß signaling plays a central role in maturation of the infarct vasculature and protects from adverse dilative remodeling, but it does not modulate fibrotic remodeling.


Asunto(s)
Infarto del Miocardio , Pericitos , Embarazo , Ratones , Femenino , Humanos , Animales , Pericitos/metabolismo , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Placenta/metabolismo , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Fibrosis , Ratones Noqueados , Fenotipo , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Mamíferos
3.
J Mol Cell Cardiol ; 171: 1-15, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35780861

RESUMEN

TGF-ßs regulate macrophage responses, by activating Smad2/3. We have previously demonstrated that macrophage-specific Smad3 stimulates phagocytosis and mediates anti-inflammatory macrophage transition in the infarcted heart. However, the role of macrophage Smad2 signaling in myocardial infarction remains unknown. We studied the role of macrophage-specific Smad2 signaling in healing mouse infarcts, and we explored the basis for the distinct effects of Smad2 and Smad3. In infarct macrophages, Smad3 activation preceded Smad2 activation. In contrast to the effects of Smad3 loss, myeloid cell-specific Smad2 disruption had no effects on mortality, ventricular dysfunction and adverse remodeling, after myocardial infarction. Macrophage Smad2 loss modestly, but transiently increased myofibroblast density in the infarct, but did not affect phagocytic removal of dead cells, macrophage infiltration, collagen deposition, and scar remodeling. In isolated macrophages, TGF-ß1, -ß2 and -ß3, activated both Smad2 and Smad3, whereas BMP6 triggered only Smad3 activation. Smad2 and Smad3 had similar patterns of nuclear translocation in response to TGF-ß1. RNA-sequencing showed that Smad3, and not Smad2, was the main mediator of transcriptional effects of TGF-ß on macrophages. Smad3 loss resulted in differential expression of genes associated with RAR/RXR signaling, cholesterol biosynthesis and lipid metabolism. In both isolated bone marrow-derived macrophages and in infarct macrophages, Smad3 mediated synthesis of Nr1d2 and Rara, two genes encoding nuclear receptors, that may be involved in regulation of their phagocytic and anti-inflammatory properties. In conclusion, the in vivo and in vitro effects of TGF-ß on macrophage function involve Smad3, and not Smad2.


Asunto(s)
Infarto del Miocardio , Proteína Smad2 , Proteína smad3 , Animales , Colesterol , Colágeno/metabolismo , Macrófagos/metabolismo , Ratones , Ratones Noqueados , Infarto del Miocardio/metabolismo , Miocardio/metabolismo , Fenotipo , ARN , Proteína Smad2/metabolismo , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
4.
FASEB J ; 36(7): e22400, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35695814

RESUMEN

Smad7 restrains TGF-ß responses, and has been suggested to exert both pro- and anti-inflammatory actions that may involve effects on macrophages. Myocardial infarction triggers a macrophage-driven inflammatory response that not only plays a central role in cardiac repair, but also contributes to adverse remodeling and fibrosis. We hypothesized that macrophage Smad7 expression may regulate inflammation and fibrosis in the infarcted heart through suppression of TGF-ß responses, or via TGF-independent actions. In a mouse model of myocardial infarction, infiltration with Smad7+ macrophages peaked 7 days after coronary occlusion. Myeloid cell-specific Smad7 loss in mice had no effects on homeostatic functions and did not affect baseline macrophage gene expression. RNA-seq predicted that Smad7 may promote TREM1-mediated inflammation in infarct macrophages. However, these alterations in the transcriptional profile of macrophages were associated with a modest and transient reduction in infarct myofibroblast infiltration, and did not affect dysfunction, chamber dilation, scar remodeling, collagen deposition, and macrophage recruitment. In vitro, RNA-seq and PCR arrays showed that TGF-ß has profound effects on macrophage profile, attenuating pro-inflammatory cytokine/chemokine expression, modulating synthesis of matrix remodeling genes, inducing genes associated with sphingosine-1 phosphate activation and integrin signaling, and inhibiting cholesterol biosynthesis genes. However, Smad7 loss did not significantly affect TGF-ß-mediated macrophage responses, modulating synthesis of only a small fraction of TGF-ß-induced genes, including Itga5, Olfml3, and Fabp7. Our findings suggest a limited role for macrophage Smad7 in regulation of post-infarction inflammation and repair, and demonstrate that the anti-inflammatory effects of TGF-ß in macrophages are not restrained by endogenous Smad7 induction.


Asunto(s)
Infarto del Miocardio , Proteína smad7/metabolismo , Animales , Fibrosis , Inflamación , Macrófagos/metabolismo , Ratones , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Fenotipo , Proteína smad7/genética , Factor de Crecimiento Transformador beta/metabolismo
5.
J Clin Invest ; 132(3)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34905511

RESUMEN

Repair of the infarcted heart requires TGF-ß/Smad3 signaling in cardiac myofibroblasts. However, TGF-ß-driven myofibroblast activation needs to be tightly regulated in order to prevent excessive fibrosis and adverse remodeling that may precipitate heart failure. We hypothesized that induction of the inhibitory Smad, Smad7, may restrain infarct myofibroblast activation, and we examined the molecular mechanisms of Smad7 actions. In a mouse model of nonreperfused infarction, Smad3 activation triggered Smad7 synthesis in α-SMA+ infarct myofibroblasts, but not in α-SMA-PDGFRα+ fibroblasts. Myofibroblast-specific Smad7 loss increased heart failure-related mortality, worsened dysfunction, and accentuated fibrosis in the infarct border zone and in the papillary muscles. Smad7 attenuated myofibroblast activation and reduced synthesis of structural and matricellular extracellular matrix proteins. Smad7 effects on TGF-ß cascades involved deactivation of Smad2/3 and non-Smad pathways, without any effects on TGF-ß receptor activity. Unbiased transcriptomic and proteomic analysis identified receptor tyrosine kinase signaling as a major target of Smad7. Smad7 interacted with ErbB2 in a TGF-ß-independent manner and restrained ErbB1/ErbB2 activation, suppressing fibroblast expression of fibrogenic proteases, integrins, and CD44. Smad7 induction in myofibroblasts serves as an endogenous TGF-ß-induced negative feedback mechanism that inhibits postinfarction fibrosis by restraining Smad-dependent and Smad-independent TGF-ß responses, and by suppressing TGF-ß-independent fibrogenic actions of ErbB2.


Asunto(s)
Insuficiencia Cardíaca/metabolismo , Infarto del Miocardio/metabolismo , Miofibroblastos/metabolismo , Receptor ErbB-2/metabolismo , Proteína smad7/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Animales , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/genética , Ratones , Ratones Noqueados , Infarto del Miocardio/complicaciones , Infarto del Miocardio/genética , Receptor ErbB-2/genética , Proteína smad7/genética , Factor de Crecimiento Transformador beta/genética
6.
Nat Cell Biol ; 23(8): 881-893, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34326481

RESUMEN

The 11 zinc finger (ZF) protein CTCF regulates topologically associating domain formation and transcription through selective binding to thousands of genomic sites. Here, we replaced endogenous CTCF in mouse embryonic stem cells with green-fluorescent-protein-tagged wild-type or mutant proteins lacking individual ZFs to identify additional determinants of CTCF positioning and function. While ZF1 and ZF8-ZF11 are not essential for cell survival, ZF8 deletion strikingly increases the DNA binding off-rate of mutant CTCF, resulting in reduced CTCF chromatin residence time. Loss of ZF8 results in widespread weakening of topologically associating domains, aberrant gene expression and increased genome-wide DNA methylation. Thus, important chromatin-templated processes rely on accurate CTCF chromatin residence time, which we propose depends on local sequence and chromatin context as well as global CTCF protein concentration.


Asunto(s)
Factor de Unión a CCCTC/fisiología , Cromatina/metabolismo , Metilación de ADN , Regulación de la Expresión Génica , Genoma , Células Madre Pluripotentes/fisiología , Animales , Factor de Unión a CCCTC/genética , Femenino , Proteínas Fluorescentes Verdes/genética , Masculino , Ratones , Mitosis , Células Madre Embrionarias de Ratones , Mutación , Células Madre Pluripotentes/metabolismo , Factores de Tiempo , Elongación de la Transcripción Genética
7.
Int J Psychiatry Med ; 56(6): 408-421, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33322985

RESUMEN

OBJECTIVE: The present study aimed to understand how key risk factors of older adult suicide interact to ultimately lead to death by suicide using data collected post-mortem. METHOD: A psychological autopsy was used to gather detailed information about psychiatric diagnosis, medical problems, social isolation, and negative attitudes expressed by the individual during the six months prior to their death. Interviews with next-of-kin, medical and psychiatric records, and the Cumulative Illness Rating Scale for Geriatrics were used. Subjects included 32 older adults who died by suicide and 45 older adults who died by natural causes. RESULTS: Hopelessness, depression, and negative health attitudes were strongly correlated with suicide. Older age was associated with social isolation, suggesting an indirect relationship with suicide via hopelessness, depression, and negative health attitudes. Physical illness did not increase risk. Multivariate analyses suggested that hopelessness fully mediated the effects of social isolation, negative health attitudes, and depression on suicide. CONCLUSIONS: Psychological factors played the largest role in suicide deaths compared to social isolation and physical illness. Suicide interventions aimed at older adults should ensure hopelessness, depression, and negative health attitudes are primary targets.


Asunto(s)
Trastornos Mentales , Suicidio , Anciano , Humanos , Factores de Riesgo , Autoimagen , Aislamiento Social
8.
Clin Gerontol ; 44(2): 97-111, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-31913808

RESUMEN

Objectives: Hope/hopelessness is an important determinant of health and death, and is a modifiable risk factor for older adults. The present review aimed to evaluate the effectiveness of interventions on hope among older populations. Methods: PsychINFO and PubMed were systematically searched. Publications reporting on interventions delivered to older adults that included quantitative data on hope/hopelessness were systematically reviewed. Results: Thirty-six studies were included, most with hope/hopelessness as a secondary outcome. Interventions based on CBT alone or combined with antidepressants significantly decreased hopelessness in depressed older adults. Psychological interventions based on life review effectively improved hope/hopelessness in a range of samples, including depressed, bereaving, or medically ill older adults. Little to no support was found for exercise programs for healthy older adults, educational interventions for medically ill individuals, or Dignity Therapy for palliative care patients. Conclusions: Hope/hopelessness in older adults can be improved using psychological interventions based on CBT and life review. Controlled trials with hope/hopelessness as a primary objective are needed to more clearly demonstrate effectiveness. Clinical implications: Cognitive-behavioral interventions can improve hopelessness in depressed older adults. Life-review based interventions can positively impact hope in a range of older populations. Dignity Therapy, physical exercise, and educational programs may not effectively improve hope/hopelessness in older adults.


Asunto(s)
Terapia Cognitivo-Conductual , Esperanza , Afecto , Anciano , Antidepresivos , Humanos , Cuidados Paliativos
9.
Circulation ; 142(19): 1831-1847, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-32972203

RESUMEN

BACKGROUND: Cardiac fibroblasts (CFs) have a central role in the ventricular remodeling process associated with different types of fibrosis. Recent studies have shown that fibroblasts do not respond homogeneously to heart injury. Because of the limited set of bona fide fibroblast markers, a proper characterization of fibroblast population heterogeneity in response to cardiac damage is lacking. The purpose of this study was to define CF heterogeneity during ventricular remodeling and the underlying mechanisms that regulate CF function. METHODS: Collagen1α1-GFP (green fluorescent protein)-positive CFs were characterized after myocardial infarction (MI) by single-cell and bulk RNA sequencing, assay for transposase-accessible chromatin sequencing, and functional assays. Swine and patient samples were studied using bulk RNA sequencing. RESULTS: We identified and characterized a unique CF subpopulation that emerges after MI in mice. These activated fibroblasts exhibit a clear profibrotic signature, express high levels of Cthrc1 (collagen triple helix repeat containing 1), and localize into the scar. Noncanonical transforming growth factor-ß signaling and different transcription factors including SOX9 are important regulators mediating their response to cardiac injury. Absence of CTHRC1 results in pronounced lethality attributable to ventricular rupture. A population of CFs with a similar transcriptome was identified in a swine model of MI and in heart tissue from patients with MI and dilated cardiomyopathy. CONCLUSIONS: We report CF heterogeneity and their dynamics during the course of MI and redefine the CFs that respond to cardiac injury and participate in myocardial remodeling. Our study identifies CTHRC1 as a novel regulator of the healing scar process and a target for future translational studies.


Asunto(s)
Proteínas de la Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Infarto del Miocardio/metabolismo , Miocardio/metabolismo , RNA-Seq , Análisis de la Célula Individual , Animales , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/metabolismo , Cardiomiopatía Dilatada/patología , Modelos Animales de Enfermedad , Proteínas de la Matriz Extracelular/genética , Fibroblastos/patología , Humanos , Ratones , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Miocardio/patología
10.
Biol Reprod ; 88(5): 120, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23575146

RESUMEN

Increased litter size and within-litter uniformity in birth weight would improve pig reproductive efficiency. This study compared the location and gene and protein expression of secreted phosphoprotein 1 in placental and uterine tissues supplying a normally sized and the smallest fetus carried by hyperprolific Large White and Meishan gilts on Days 41-42 of pregnancy. Immunohistochemistry and in situ hybridization showed that the protein and gene encoding secreted phosphoprotein 1 were located in the glandular and luminal epithelium of the endometrium and in the placenta. Secreted phosphoprotein 1 protein levels were higher in glandular epithelium, luminal epithelium, and placenta from Meishan gilts compared to corresponding tissues from hyperprolific Large White gilts. Reverse transcription quantitative PCR demonstrated secreted phosphoprotein 1 mRNA levels were higher in endometrium, but not placenta, from Meishan compared to hyperprolific Large White gilts. In hyperprolific Large White gilts, secreted phosphoprotein 1 protein levels were higher in glandular epithelium and placenta surrounding small fetuses than corresponding tissues supplying normal-sized fetuses. Similarly, in Meishan gilts, secreted phosphoprotein 1 protein levels were higher in luminal epithelium surrounding small compared to normal-sized fetuses. Within hyperprolific Large White, but not Meishan, gilts secreted phosphoprotein 1 mRNA was higher in endometrium surrounding the normal-sized fetus than the control fetus. The contradictory relationship between fetal size and secreted phosphoprotein 1 protein and mRNA in the hyperprolific Large White is intriguing and may reflect breed differences in posttranslational modification. The striking breed differences in secreted phospoprotein 1 expression suggest that SPP1 may be associated with placental efficiency.


Asunto(s)
Endometrio/metabolismo , Osteopontina/metabolismo , Placenta/metabolismo , Porcinos/metabolismo , Animales , Células Epiteliales/metabolismo , Femenino , Desarrollo Fetal , Feto/metabolismo , Tamaño de la Camada/genética , Osteopontina/genética , Embarazo , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA