Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 38(2): 110201, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-35021102

RESUMEN

Homologous recombination is essential to maintain genome stability in response to DNA damage. Here, we have used genome-wide sequencing to quantitatively analyze at nucleotide resolution the dynamics of DNA end resection, re-synthesis, and gene conversion at a double-strand break. Resection initiates asymmetrically in an MRX-independent manner before proceeding steadily in both directions. Sgs1, Exo1, Rad51, and Srs2 differently regulate the rate and symmetry of early and late resection. Exo1 also ensures the coexistence of resection and re-synthesis, while Srs2 guarantees a constant and symmetrical DNA re-polymerization. Gene conversion is MMR independent, spans only a minor fraction of the resected region, and its unidirectionality depends on Srs2. Finally, these repair factors prevent the development of alterations remote from the DNA lesion, such as subtelomeric instability, duplication of genomic regions, and over-replication of Ty elements. Altogether, this approach allows a quantitative analysis and a direct genome-wide visualization of DNA repair by homologous recombination.


Asunto(s)
Reparación del ADN por Recombinación/genética , Reparación del ADN por Recombinación/fisiología , Roturas del ADN de Doble Cadena , Daño del ADN , ADN Helicasas/genética , ADN Helicasas/metabolismo , Reparación del ADN/genética , Reparación del ADN/fisiología , Replicación del ADN , Exodesoxirribonucleasas/genética , Estudio de Asociación del Genoma Completo , Inestabilidad Genómica , Recombinasa Rad51/genética , RecQ Helicasas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Análisis de Secuencia de ADN/métodos
2.
Nat Chem Biol ; 17(8): 845-855, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34312558

RESUMEN

One-carbon (C1) substrates are preferred feedstocks for the biomanufacturing industry and have recently gained attention owing to their natural abundance, low production cost and availability as industrial by-products. However, native pathways to utilize these substrates are absent in most biotechnologically relevant microorganisms. Recent advances in synthetic biology, genome engineering and laboratory evolution are enabling the first steps towards the creation of synthetic C1-utilizing microorganisms. Here, we briefly review the native metabolism of methane, methanol, CO2, CO and formate, and how these C1-utilizing pathways can be engineered into heterologous hosts. In addition, this review analyses the potential, the challenges and the perspectives of C1-based biomanufacturing.


Asunto(s)
Bacterias/metabolismo , Hongos/metabolismo , Ingeniería Metabólica , Bacterias/citología , Dióxido de Carbono/metabolismo , Monóxido de Carbono/metabolismo , Formiatos/metabolismo , Hongos/citología , Metano/metabolismo , Metanol/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA