Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Reprod Fertil Dev ; 35(9): 518-526, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37225163

RESUMEN

CONTEXT: Sphingosine-1-phosphate (S1P) is synthesised by follicle granulosa cells under the influence of follicle-stimulating hormone and seems to be necessary for the biological effects of this gonadotrophin. AIMS: To determine if luteinising hormone (LH) increases S1P production and if this sphingolipid, either induced by LH or added to culture media, regulates steroidogenesis and cell viability in bovine theca cells. METHODS: We used bovine theca cell cultures treated with: S1P (0, 0.1, 1 and 10µM; Experiment 1), LH (0, 0.02, 0.2 and 2ngmL-1 ; Experiment 2) and LH (0.02ngmL-1 ) plus a sphingosine kinase inhibitor (SKI-178; 0, 5 and 10µM; Experiment 3). KEY RESULTS: Treatment with S1P did not affect (P >0.05) theca cell viability or their ability to produce progesterone and testosterone. LH (0.02ngmL-1 ) increased (P <0.05) S1P production, and stimulated the expression of phosphorylated sphingosine kinase-1 (pSPHK1). However, the inhibition of SPHK1, by a specific SPHK1 inhibitor (SKI-178), reduced (P <0.05) cell viability and progesterone secretion. Additionally, the use of SKI-178 increased theca cell testosterone production (P<0.05). CONCLUSIONS: S1P added to culture media did not affect cell viability or steroid synthesis. However, LH stimulated the production of S1P, by increasing phosphorylation of SPHK1 in theca cells. This intracellular S1P was inhibitory on testosterone production but augmented progesterone and viable cell number. IMPLICATIONS: These results suggest a novel signalling pathway for LH in theca cells and underline the importance of S1P in the regulation of steroid synthesis.


Asunto(s)
Progesterona , Células Tecales , Femenino , Animales , Bovinos , Células Tecales/metabolismo , Progesterona/metabolismo , Hormona Luteinizante/farmacología , Hormona Luteinizante/metabolismo , Células de la Granulosa/metabolismo , Testosterona/metabolismo , Proliferación Celular , Medios de Cultivo/farmacología , Células Cultivadas
2.
Mol Reprod Dev ; 90(4): 201-217, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36966489

RESUMEN

The vascular endothelial growth factor-A (VEGFA) system is a complex set of proteins, with multiple isoforms and receptors, including both angiogenic (VEGFxxx, VEGFR2) and antiangiogenic members (VEGFxxxb, VEGFR1 and soluble forms of VEGFR). The members of the VEGF system affect the proliferation, survival, and migration of endothelial and nonendothelial cells and are involved in the regulation of follicular angiogenesis and development. The production of VEGF by secondary follicles stimulates preantral follicular development by directly affecting follicular cells and promoting the acquisition of the follicular vasculature and downstream antrum formation. Additionally, the pattern of expression of the components of the VEGF system may provide a proangiogenic milieu capable of triggering angiogenesis and stimulating follicular cells to promote antral follicle growth, whereas, during atresia, this milieu becomes antiangiogenic and blocks follicular development.


Asunto(s)
Folículo Ovárico , Factor A de Crecimiento Endotelial Vascular , Femenino , Humanos , Folículo Ovárico/metabolismo , Factores de Crecimiento Endotelial Vascular/metabolismo , Isoformas de Proteínas/metabolismo
3.
Theriogenology ; 165: 76-83, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33640589

RESUMEN

Oxygen concentration (02) in antral ovarian follicles is below that found in most tissues, which is important for adequate granulosa cell function. The VEGF system is linked to angiogenesis and responds to changing 02 by stimulating neovascularization when levels are low. However, in the avascular granulosa cell layer of the follicle, VEGF action is directed to stimulating cell viability and steroidogenesis. The aim of this study was to examine the effect of 02 concentration on granulosa cell expression of the VEGF-system components. Bovine granulosa cells were isolated from medium-sized follicles (4-7 mm in diameter), placed in McCoy 5a medium supplemented with 10 ng/mL of insulin, 1 ng/mL of IGF-I, and 1 ng/mL of FSH, and cultured in four well plates (500 thousand cells per well), on three separate occasions. Culture plates were placed in gas-impermeable jars with a gas mixture containing either 2%, or 5% of O2, or under atmospheric air condition inside an incubator (20% of 02). Media was replaced at 48 h of culture and cells from the plate in each oxygen concentration were pooled for RNA extraction after 96 h. The number of mRNA copies for the VEGF-system components - including ligands (VEGF120, VEGF120b, VEGF165 and VEGF165b), enzymes (cyclin-dependent like kinases-1, CLK1 and serine-arginine protein kinase 1, SRPK1), splicing factors (serine-arginine-rich splicing factors, SRSF1 and SRSF6), and the membrane-bound (VEGFR1, VEGFR2) and soluble forms of the receptors (sVEGFR1 and sVEGFR2) were quantified by qPCR. Granulosa cells cultured with low 02 (2%) had a higher expression of VEGF ligands (P < 0.05) when compared to cells cultured at 20% 02. VEGF164b mRNA was absent in granulosa cells from all culture conditions. The 2 and 5% 02 levels, which coincide with physiological concentrations, in the ovarian follicle, induced higher SRSF6 expression than atmospheric 02 concentrations (20%, P < 0.05). In contrast, mRNA copies for SRPK1, CLK1, SRSF1, VEGFR1 or VEGFR2 did not differ between 02 culture conditions. (P > 0.05). Nonetheless, mRNA copies for the soluble receptors, sVEGFR1 and sVEGFR2, linearly increased (P < 0.05) with 02 concentration. These results suggest that when cultured under hypoxic conditions, granulosa cells may develop an autocrine milieu that favors VEGF's biological effects on their survival and function.


Asunto(s)
Células de la Granulosa , Factor A de Crecimiento Endotelial Vascular , Animales , Bovinos , Células Cultivadas , Femenino , Hormona Folículo Estimulante , Hipoxia/veterinaria , Ligandos , ARN Mensajero/genética , Factor A de Crecimiento Endotelial Vascular/genética
4.
Ann Endocrinol (Paris) ; 80(5-6): 263-272, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31455516

RESUMEN

Sphingosine-1-phoshate (S1P) is a membrane sphingolipid involved in several physiological processes, including cell proliferation, tissue growth, cell survival and migration, inflammation, vasculogenesis, and angiogenesis. Herein, we review the most critical effects of S1P on ovarian function, including its physiological and pathophysiological effects. Based on the available evidence, S1P plays an important role in ovarian physiology, participating as an essential stimulator of follicular development in both the preantral and antral phases, as well as in ovulation and corpus luteum development. Moreover, S1P may be a good cytoprotective agent against cancer treatment side-effects (chemotherapy with or without radiation therapy). In the future, this compound may be given for fertility preservation to women undergoing cancer treatment. However, further studies are required to confirm its efficacy in ovarian protection and also its safety in terms of cancer prognosis, given the biological action of the compound. Under- or over-production of S1P may be related to ovarian pathologies.


Asunto(s)
Lisofosfolípidos/fisiología , Enfermedades del Ovario/fisiopatología , Ovario/fisiopatología , Esfingosina/análogos & derivados , Animales , Proliferación Celular , Cuerpo Lúteo/crecimiento & desarrollo , Femenino , Preservación de la Fertilidad , Humanos , Enfermedades del Ovario/patología , Folículo Ovárico/crecimiento & desarrollo , Neoplasias Ováricas/patología , Neoplasias Ováricas/fisiopatología , Ovario/patología , Esfingosina/fisiología , Receptores de Esfingosina-1-Fosfato/fisiología
5.
Mol Reprod Dev ; 86(2): 156-165, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30431677

RESUMEN

In the present study, we investigated the temporal relationship between angiogenic and antiangiogenic vascular endothelial growth factor isoforms (VEGFxxxa and VEGFxxxb, respectively), the receptors VEGFR1 and VEGFR2, their soluble forms, and the kinases and the splicing factors regulating the synthesis of VEGF isoforms in healthy and atretic antral follicles. The results show a higher (p < 0.05) messenger RNA (mRNA) expression of VEGF120a, VEGF164a, and VEGF120b in healthy than in atretic follicles, but the mRNA expression of VEGF164b was not detected. The mRNA of serine-arginine protein kinase 1 ( SRPK1) was higher ( p < 0.05) in large healthy follicles than in large atretic follicles. In contrast, atretic follicles had higher mRNA expression of a soluble form of the receptor 2 of VEGF ( sVEGFR2) than healthy follicles ( p < 0.05). Additionally, we observed a positive relationship ( p < 0.05) between SRPK1 and serine-arginine-rich splicing factor 1 ( SRSF1) with the angiogenic isoforms VEGF120a and VEGF164a and between CDC-like kinases-1 ( CLK1) and SRSF6 with the antiangiogenic VEGF120b isoform. Principal components analysis (PCA) resulted in two PC explaining 71% of the variation, which was formed by the VEGF isoforms, the kinases and the splicing factor (PC1) and by the VEGF receptors (PC2). When PC analysis was carried out within follicular health status, there were no differences for PC1 between follicular status, whereas PC2 differed between healthy and atretic follicles. In conclusion, the higher mRNA expression for VEGF120a and VEGF164a, the low expression of sVEGFR2, and absent expression of mRNA for VEGF164b provide evidence of a proangiogenic autocrine milieu to support granulosa cells during follicle development.


Asunto(s)
Comunicación Autocrina/fisiología , Regulación de la Expresión Génica/fisiología , Células de la Granulosa/metabolismo , Factor A de Crecimiento Endotelial Vascular/biosíntesis , Receptor 1 de Factores de Crecimiento Endotelial Vascular/biosíntesis , Receptor 2 de Factores de Crecimiento Endotelial Vascular/biosíntesis , Animales , Bovinos , Femenino , Células de la Granulosa/citología
6.
Ann Endocrinol (Paris) ; 80(1): 38-46, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30243474

RESUMEN

The present review focused on the most important effects of leptin on the hypothalamus and on how leptin regulates neuropeptides associated with food intake and GnRH secretion. This review of the literature suggests that a reduction in leptin serum concentrations results from lower body energy reserves or poor energy availability, leading to hypothalamic secretion of neuropeptides such as NPY/AgRP and QRFP to stimulate food intake. Under these negative metabolic conditions, GnRH secretion is reduced, impairing reproductive functions. In contrast, when metabolic status is inversed by an increase in food availability, energy reserves or both, leptin serum concentrations increase to an action threshold reversing the pattern of secretion: i.e., reducing NPY/AgRP and QRFP and increasing POMC and Kisspeptin, and thereby reducing food intake and stimulating GnRH secretion to promote reproductive function.


Asunto(s)
Ingestión de Alimentos/fisiología , Hormona Liberadora de Gonadotropina/metabolismo , Leptina/fisiología , Neuropéptidos/fisiología , Proteína Relacionada con Agouti/metabolismo , Animales , Metabolismo Energético/fisiología , Homeostasis/fisiología , Humanos , Hipotálamo/fisiología , Kisspeptinas/metabolismo , Leptina/sangre , Neuropéptido Y/metabolismo , Proopiomelanocortina/metabolismo , Reproducción/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA