Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38896815

RESUMEN

In this work, the Na2CO3 of the sodium manganese ferrite thermochemical cycle was substituted by different eutectic or eutectoid alkali carbonate mixtures. Substituting Na2CO3 with the eutectoid (Li0.07Na0.93)2CO3 mixture resulted in faster hydrogen production after the first cycle, shifting the hydrogen production maximum toward shorter reaction times. Thermodynamic calculations and in situ optical microscopy attributed this fact to the partial melting of the eutectoid carbonate, which helps the diffusion of the ions. Unfortunately, all the mixtures exhibit a significant loss of reversibility in terms of hydrogen production upon cycling. Among them, the nonsubstituted Na mixture exhibits the highest reversibility in terms of hydrogen production followed by the 7%Li-Na mixture, while the 50%Li-Na and Li-K-Na mixtures do not produce any hydrogen after the first cycle. The loss of reversibility is attributed to both the formation of undesired phases and sintering, the latter being more pronounced in the eutectic and eutectoid alkali carbonate mixtures, where the melting of the carbonate is predicted by thermodynamics.

2.
Nanomaterials (Basel) ; 13(18)2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37764569

RESUMEN

The automotive sector is demanding higher specifications to achieve maximum efficiency; in this sense a new generation of lubricants with higher thermo-oxidative stability and superior tribological properties is being explored. The formulation of nanolubricants based on the nature of different nanomaterials is one of the most recent approaches, with several gaps to cover, such as dispersion stability, related to the compatibility of proposed nanomaterials with conventional additives and baseoils used in lubricant formulation. This study evaluated the effect of ZnO nanomaterial dispersed in a commercial engine oil using two different approaches; the use of surfactant and nanomaterial surface functionalization to promote higher stability and lower cluster size. Experimental evidence shows a synergetic effect between the tribological protection mechanism and the antioxidant properties in the lubricant. The effect of nanoparticle cluster size, functionalization level, and nanomaterial content are presented.

3.
Nanomaterials (Basel) ; 13(15)2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37570548

RESUMEN

Flow boiling is a complex process but very efficient for thermal management in different sectors; enhancing flow boiling heat transfer properties is a research field of great interest. This study proposes the use of various nanomaterials, carbon-based materials, and metal oxides; in n-pentane as a hydrocarbon-based refrigerant to enhance the flow boiling heat transfer coefficient. This thermal property has been experimentally evaluated using a vertical evaporation device of glass with an internal diameter of 20 mm. The results have shown that proposed nanomaterials dispersion in n-pentane has a limited effect on the thermophysical properties and is conditioned by their dispersibility but promotes a significant increment of pentane heat transfer coefficient (h), increasing the overall heat transfer coefficient (U) of the evaporator. The enhanced heat transfer performance is attributed to the behavior of nanoparticles under working conditions and their interaction with the working surface, promoting a higher generation of nucleation sites. The observed behavior suggests a heat transfer mechanism transition from forced convection to nucleate heat transfer, supported by visual observations.

4.
Materials (Basel) ; 15(10)2022 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-35629722

RESUMEN

One of the possible solutions for the transition of the actual energetic model is the use of thermal energy storage technologies. Among them, thermochemical energy storage based on redox reactions involving metal oxides is very promising due to its high energy density. This paper deals with the development of the kinetic study based on data extracted from the thermogravimetric analysis of a cobalt-nickel mixed oxide (Co2.4Ni0.6O4) without and with the addition of SiO2 particles to improve the cyclability. The results show that in the reduction reaction the activation energy is not affected by the addition of SiO2 particles while in the oxidation reaction an increase in the activation energy is observed. The theoretical models fitting with the experimental data are different for each material in the reduction reaction. The mixed oxide is controlled by a nucleation and growth mechanism for conversion ratios higher than 0.5, while the added material is controlled by diffusion mechanisms. In the oxidation reaction, the two materials are controlled by a nucleation and growth mechanism for conversion ratios higher than 0.5.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA