Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Syst ; 13(9): 768-779.e4, 2022 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-36044898

RESUMEN

Biological systems have the capacity to not only build and robustly maintain complex structures but also to rapidly break up and rebuild such structures. Here, using primitive societies of Polistes wasps, we show that both robust specialization and rapid plasticity are emergent properties of multi-scale dynamics. We combine theory with experiments that, after perturbing the social structure by removing the queen, correlate time-resolved multi-omics with video recordings. We show that the queen-worker dimorphism relies on the balance between the development of a molecular queen phenotype in all insects and colony-scale inhibition of this phenotype via asymmetric interactions. This allows Polistes to be stable against intrinsic perturbations of molecular states while reacting plastically to extrinsic cues affecting the whole society. Long-term stability of the social structure is reinforced by dynamic DNA methylation. Our study provides a general principle of how both specialization and plasticity can be achieved in biological systems. A record of this paper's transparent peer review process is included in the supplemental information.


Asunto(s)
Avispas , Animales , Metilación de ADN , Fenotipo , Avispas/genética
2.
Elife ; 112022 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-35390271

RESUMEN

Ageing is the gradual decline in organismal fitness that occurs over time leading to tissue dysfunction and disease. At the cellular level, ageing is associated with reduced function, altered gene expression and a perturbed epigenome. Recent work has demonstrated that the epigenome is already rejuvenated by the maturation phase of somatic cell reprogramming, which suggests full reprogramming is not required to reverse ageing of somatic cells. Here we have developed the first "maturation phase transient reprogramming" (MPTR) method, where reprogramming factors are selectively expressed until this rejuvenation point then withdrawn. Applying MPTR to dermal fibroblasts from middle-aged donors, we found that cells temporarily lose and then reacquire their fibroblast identity, possibly as a result of epigenetic memory at enhancers and/or persistent expression of some fibroblast genes. Excitingly, our method substantially rejuvenated multiple cellular attributes including the transcriptome, which was rejuvenated by around 30 years as measured by a novel transcriptome clock. The epigenome was rejuvenated to a similar extent, including H3K9me3 levels and the DNA methylation ageing clock. The magnitude of rejuvenation instigated by MPTR appears substantially greater than that achieved in previous transient reprogramming protocols. In addition, MPTR fibroblasts produced youthful levels of collagen proteins, and showed partial functional rejuvenation of their migration speed. Finally, our work suggests that optimal time windows exist for rejuvenating the transcriptome and the epigenome. Overall, we demonstrate that it is possible to separate rejuvenation from complete pluripotency reprogramming, which should facilitate the discovery of novel anti-ageing genes and therapies.


Asunto(s)
Células Madre Pluripotentes Inducidas , Rejuvenecimiento , Reprogramación Celular/genética , Metilación de ADN , Epigenoma , Epigenómica/métodos , Fibroblastos , Humanos , Persona de Mediana Edad
3.
PLoS Genet ; 16(10): e1009022, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33125370

RESUMEN

Adult skeletal muscles are maintained during homeostasis and regenerated upon injury by muscle stem cells (MuSCs). A heterogeneity in self-renewal, differentiation and regeneration properties has been reported for MuSCs based on their anatomical location. Although MuSCs derived from extraocular muscles (EOM) have a higher regenerative capacity than those derived from limb muscles, the molecular determinants that govern these differences remain undefined. Here we show that EOM and limb MuSCs have distinct DNA methylation signatures associated with enhancers of location-specific genes, and that the EOM transcriptome is reprogrammed following transplantation into a limb muscle environment. Notably, EOM MuSCs expressed host-site specific positional Hox codes after engraftment and self-renewal within the host muscle. However, about 10% of EOM-specific genes showed engraftment-resistant expression, pointing to cell-intrinsic molecular determinants of the higher engraftment potential of EOM MuSCs. Our results underscore the molecular diversity of distinct MuSC populations and molecularly define their plasticity in response to microenvironmental cues. These findings provide insights into strategies designed to improve the functional capacity of MuSCs in the context of regenerative medicine.


Asunto(s)
Plasticidad de la Célula/genética , Epigenoma/genética , Trasplante de Células Madre , Transcriptoma/genética , Animales , Diferenciación Celular/genética , Linaje de la Célula/genética , Proliferación Celular/genética , Extremidades/crecimiento & desarrollo , Variación Genética/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Células Musculares/citología , Fibras Musculares Esqueléticas , Músculo Esquelético/citología , Mioblastos/citología , Regeneración/genética , Células Madre/citología , Células Madre/metabolismo
4.
Cell Syst ; 11(1): 25-41.e9, 2020 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-32634384

RESUMEN

Zygotic genome activation (ZGA) is an essential transcriptional event in embryonic development that coincides with extensive epigenetic reprogramming. Complex manipulation techniques and maternal stores of proteins preclude large-scale functional screens for ZGA regulators within early embryos. Here, we combined pooled CRISPR activation (CRISPRa) with single-cell transcriptomics to identify regulators of ZGA-like transcription in mouse embryonic stem cells, which serve as a tractable, in vitro proxy of early mouse embryos. Using multi-omics factor analysis (MOFA+) applied to ∼200,000 single-cell transcriptomes comprising 230 CRISPRa perturbations, we characterized molecular signatures of ZGA and uncovered 24 factors that promote a ZGA-like response. Follow-up assays validated top screen hits, including the DNA-binding protein Dppa2, the chromatin remodeler Smarca5, and the transcription factor Patz1, and functional experiments revealed that Smarca5's regulation of ZGA-like transcription is dependent on Dppa2. Together, our single-cell transcriptomic profiling of CRISPRa-perturbed cells provides both system-level and molecular insights into the mechanisms that orchestrate ZGA.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Epigénesis Genética/genética , Genoma/genética , Transcriptoma/genética , Cigoto/metabolismo , Humanos
5.
Genome Res ; 30(2): 250-262, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31953346

RESUMEN

Previously published comparative functional genomic data sets from primates using frozen tissue samples, including many data sets from our own group, were often collected and analyzed using nonoptimal study designs and analysis approaches. In addition, when samples from multiple tissues were studied in a comparative framework, individuals and tissues were confounded. We designed a multitissue comparative study of gene expression and DNA methylation in primates that minimizes confounding effects by using a balanced design with respect to species, tissues, and individuals. We also developed a comparative analysis pipeline that minimizes biases attributable to sequence divergence. Thus, we present the most comprehensive catalog of similarities and differences in gene expression and DNA methylation levels between livers, kidneys, hearts, and lungs, in humans, chimpanzees, and rhesus macaques. We estimate that overall, interspecies and inter-tissue differences in gene expression levels can only modestly be accounted for by corresponding differences in promoter DNA methylation. However, the expression pattern of genes with conserved inter-tissue expression differences can be explained by corresponding interspecies methylation changes more often. Finally, we show that genes whose tissue-specific regulatory patterns are consistent with the action of natural selection are highly connected in both gene regulatory and protein-protein interaction networks.


Asunto(s)
Metilación de ADN/genética , Expresión Génica/genética , Genómica , Selección Genética , Animales , Epigénesis Genética , Perfilación de la Expresión Génica , Humanos , Macaca mulatta/genética , Pan troglodytes/genética , Regiones Promotoras Genéticas/genética , Procesamiento Proteico-Postraduccional/genética , Especificidad de la Especie
6.
Nat Commun ; 10(1): 4361, 2019 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-31554804

RESUMEN

Age-related tissue alterations have been associated with a decline in stem cell number and function. Although increased cell-to-cell variability in transcription or epigenetic marks has been proposed to be a major hallmark of ageing, little is known about the molecular diversity of stem cells during ageing. Here we present a single cell multi-omics study of mouse muscle stem cells, combining single-cell transcriptome and DNA methylome profiling. Aged cells show a global increase of uncoordinated transcriptional heterogeneity biased towards genes regulating cell-niche interactions. We find context-dependent alterations of DNA methylation in aged stem cells. Importantly, promoters with increased methylation heterogeneity are associated with increased transcriptional heterogeneity of the genes they drive. These results indicate that epigenetic drift, by accumulation of stochastic DNA methylation changes in promoters, is associated with the degradation of coherent transcriptional networks during stem cell ageing. Furthermore, our observations also shed light on the mechanisms underlying the DNA methylation clock.


Asunto(s)
Envejecimiento , Senescencia Celular , Metilación de ADN , Células Madre/metabolismo , Transcriptoma/genética , Animales , Células Cultivadas , Epigénesis Genética , Epigenómica/métodos , Perfilación de la Expresión Génica/métodos , Ontología de Genes , Humanos , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Transgénicos , Músculos/citología , Regiones Promotoras Genéticas/genética , Análisis de la Célula Individual , Células Madre/citología
7.
Development ; 145(21)2018 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-30413530

RESUMEN

The mouse embryo is the canonical model for mammalian preimplantation development. Recent advances in single cell profiling allow detailed analysis of embryogenesis in other eutherian species, including human, to distinguish conserved from divergent regulatory programs and signalling pathways in the rodent paradigm. Here, we identify and compare transcriptional features of human, marmoset and mouse embryos by single cell RNA-seq. Zygotic genome activation correlates with the presence of polycomb repressive complexes in all three species, while ribosome biogenesis emerges as a predominant attribute in primate embryos, supporting prolonged translation of maternally deposited RNAs. We find that transposable element expression signatures are species, stage and lineage specific. The pluripotency network in the primate epiblast lacks certain regulators that are operative in mouse, but encompasses WNT components and genes associated with trophoblast specification. Sequential activation of GATA6, SOX17 and GATA4 markers of primitive endoderm identity is conserved in primates. Unexpectedly, OTX2 is also associated with primitive endoderm specification in human and non-human primate blastocysts. Our cross-species analysis demarcates both conserved and primate-specific features of preimplantation development, and underscores the molecular adaptability of early mammalian embryogenesis.


Asunto(s)
Callithrix/genética , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario/genética , Análisis de la Célula Individual , Transcriptoma/genética , Animales , Secuencia Conservada/genética , Endodermo/metabolismo , Epigénesis Genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Estratos Germinativos/metabolismo , Humanos , Ratones , Factores de Transcripción Otx , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribosomas/genética , Transcripción Genética
8.
Cell Rep ; 20(5): 1215-1228, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28768204

RESUMEN

The mouse inner cell mass (ICM) segregates into the epiblast and primitive endoderm (PrE) lineages coincident with implantation of the embryo. The epiblast subsequently undergoes considerable expansion of cell numbers prior to gastrulation. To investigate underlying regulatory principles, we performed systematic single-cell RNA sequencing (seq) of conceptuses from E3.5 to E6.5. The epiblast shows reactivation and subsequent inactivation of the X chromosome, with Zfp57 expression associated with reactivation and inactivation together with other candidate regulators. At E6.5, the transition from epiblast to primitive streak is linked with decreased expression of polycomb subunits, suggesting a key regulatory role. Notably, our analyses suggest elevated transcriptional noise at E3.5 and within the non-committed epiblast at E6.5, coinciding with exit from pluripotency. By contrast, E6.5 primitive streak cells became highly synchronized and exhibit a shortened G1 cell-cycle phase, consistent with accelerated proliferation. Our study systematically charts transcriptional noise and uncovers molecular processes associated with early lineage decisions.


Asunto(s)
Proliferación Celular/fisiología , Embrión de Mamíferos/embriología , Gástrula/embriología , Gastrulación/fisiología , Transcripción Genética/fisiología , Animales , Gástrula/citología , Ratones
9.
PLoS Genet ; 11(12): e1005661, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26658498

RESUMEN

A fundamental initiative for evolutionary biologists is to understand the molecular basis underlying phenotypic diversity. A long-standing hypothesis states that species-specific traits may be explained by differences in gene regulation rather than differences at the protein level. Over the past few years, evolutionary studies have shifted from mere sequence comparisons to integrative analyses in which gene regulation is key to understanding species evolution. DNA methylation is an important epigenetic modification involved in the regulation of numerous biological processes. Nevertheless, the evolution of the human methylome and the processes driving such changes are poorly understood. Here, we review the close interplay between Cytosine-phosphate-Guanine (CpG) methylation and the underlying genome sequence, as well as its evolutionary impact. We also summarize the latest advances in the field, revisiting the main literature on human and nonhuman primates. We hope to encourage the scientific community to address the many challenges posed by the field of comparative epigenomics.


Asunto(s)
Metilación de ADN/genética , Epigénesis Genética , Evolución Molecular , Genoma Humano , Animales , Islas de CpG/genética , Regulación de la Expresión Génica , Humanos , Primates/genética
10.
Nucleic Acids Res ; 43(17): 8204-14, 2015 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-26170231

RESUMEN

Despite the increasing knowledge about DNA methylation, the understanding of human epigenome evolution is in its infancy. Using whole genome bisulfite sequencing we identified hundreds of differentially methylated regions (DMRs) in humans compared to non-human primates and estimated that ∼25% of these regions were detectable throughout several human tissues. Human DMRs were enriched for specific histone modifications and the majority were located distal to transcription start sites, highlighting the importance of regions outside the direct regulatory context. We also found a significant excess of endogenous retrovirus elements in human-specific hypomethylated.We reported for the first time a close interplay between inter-species genetic and epigenetic variation in regions of incomplete lineage sorting, transcription factor binding sites and human differentially hypermethylated regions. Specifically, we observed an excess of human-specific substitutions in transcription factor binding sites located within human DMRs, suggesting that alteration of regulatory motifs underlies some human-specific methylation patterns. We also found that the acquisition of DNA hypermethylation in the human lineage is frequently coupled with a rapid evolution at nucleotide level in the neighborhood of these CpG sites. Taken together, our results reveal new insights into the mechanistic basis of human-specific DNA methylation patterns and the interpretation of inter-species non-coding variation.


Asunto(s)
Metilación de ADN , Evolución Molecular , Animales , Variación Genética , Genómica , Gorilla gorilla , Humanos , Pan troglodytes , Pongo abelii , Análisis de Secuencia de ADN , Especificidad de la Especie
11.
Elife ; 4: e07103, 2015 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-26102527

RESUMEN

Comparative genomics studies in primates are restricted due to our limited access to samples. In order to gain better insight into the genetic processes that underlie variation in complex phenotypes in primates, we must have access to faithful model systems for a wide range of cell types. To facilitate this, we generated a panel of 7 fully characterized chimpanzee induced pluripotent stem cell (iPSC) lines derived from healthy donors. To demonstrate the utility of comparative iPSC panels, we collected RNA-sequencing and DNA methylation data from the chimpanzee iPSCs and the corresponding fibroblast lines, as well as from 7 human iPSCs and their source lines, which encompass multiple populations and cell types. We observe much less within-species variation in iPSCs than in somatic cells, indicating the reprogramming process erases many inter-individual differences. The low within-species regulatory variation in iPSCs allowed us to identify many novel inter-species regulatory differences of small magnitude.


Asunto(s)
Diferenciación Celular , Genómica/métodos , Células Madre Pluripotentes Inducidas , Pan troglodytes , Animales , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Humanos , Datos de Secuencia Molecular , Análisis de Secuencia de ADN
12.
PLoS Genet ; 9(9): e1003763, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24039605

RESUMEN

DNA methylation is an epigenetic modification involved in regulatory processes such as cell differentiation during development, X-chromosome inactivation, genomic imprinting and susceptibility to complex disease. However, the dynamics of DNA methylation changes between humans and their closest relatives are still poorly understood. We performed a comparative analysis of CpG methylation patterns between 9 humans and 23 primate samples including all species of great apes (chimpanzee, bonobo, gorilla and orangutan) using Illumina Methylation450 bead arrays. Our analysis identified ∼800 genes with significantly altered methylation patterns among the great apes, including ∼170 genes with a methylation pattern unique to human. Some of these are known to be involved in developmental and neurological features, suggesting that epigenetic changes have been frequent during recent human and primate evolution. We identified a significant positive relationship between the rate of coding variation and alterations of methylation at the promoter level, indicative of co-occurrence between evolution of protein sequence and gene regulation. In contrast, and supporting the idea that many phenotypic differences between humans and great apes are not due to amino acid differences, our analysis also identified 184 genes that are perfectly conserved at protein level between human and chimpanzee, yet show significant epigenetic differences between these two species. We conclude that epigenetic alterations are an important force during primate evolution and have been under-explored in evolutionary comparative genomics.


Asunto(s)
Metilación de ADN/genética , Epigénesis Genética , Impresión Genómica , Regiones Promotoras Genéticas , Animales , Islas de CpG/genética , Regulación de la Expresión Génica , Gorilla gorilla/genética , Hominidae/genética , Humanos , Pan paniscus/genética , Pan troglodytes/genética , Pongo/genética
13.
Genome Res ; 23(9): 1363-72, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23908385

RESUMEN

DNA methylation patterns are important for establishing cell, tissue, and organism phenotypes, but little is known about their contribution to natural human variation. To determine their contribution to variability, we have generated genome-scale DNA methylation profiles of three human populations (Caucasian-American, African-American, and Han Chinese-American) and examined the differentially methylated CpG sites. The distinctly methylated genes identified suggest an influence of DNA methylation on phenotype differences, such as susceptibility to certain diseases and pathogens, and response to drugs and environmental agents. DNA methylation differences can be partially traced back to genetic variation, suggesting that differentially methylated CpG sites serve as evolutionarily established mediators between the genetic code and phenotypic variability. Notably, one-third of the DNA methylation differences were not associated with any genetic variation, suggesting that variation in population-specific sites takes place at the genetic and epigenetic levels, highlighting the contribution of epigenetic modification to natural human variation.


Asunto(s)
Metilación de ADN , Variación Genética , Población/genética , Adulto , Negro o Afroamericano/genética , Asiático/genética , Epigénesis Genética , Femenino , Genoma Humano , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Sitios de Carácter Cuantitativo , Población Blanca/genética
14.
Nature ; 499(7459): 471-5, 2013 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-23823723

RESUMEN

Most great ape genetic variation remains uncharacterized; however, its study is critical for understanding population history, recombination, selection and susceptibility to disease. Here we sequence to high coverage a total of 79 wild- and captive-born individuals representing all six great ape species and seven subspecies and report 88.8 million single nucleotide polymorphisms. Our analysis provides support for genetically distinct populations within each species, signals of gene flow, and the split of common chimpanzees into two distinct groups: Nigeria-Cameroon/western and central/eastern populations. We find extensive inbreeding in almost all wild populations, with eastern gorillas being the most extreme. Inferred effective population sizes have varied radically over time in different lineages and this appears to have a profound effect on the genetic diversity at, or close to, genes in almost all species. We discover and assign 1,982 loss-of-function variants throughout the human and great ape lineages, determining that the rate of gene loss has not been different in the human branch compared to other internal branches in the great ape phylogeny. This comprehensive catalogue of great ape genome diversity provides a framework for understanding evolution and a resource for more effective management of wild and captive great ape populations.


Asunto(s)
Variación Genética , Hominidae/genética , África , Animales , Animales Salvajes/genética , Animales de Zoológico/genética , Asia Sudoriental , Evolución Molecular , Flujo Génico/genética , Genética de Población , Genoma/genética , Gorilla gorilla/clasificación , Gorilla gorilla/genética , Hominidae/clasificación , Humanos , Endogamia , Pan paniscus/clasificación , Pan paniscus/genética , Pan troglodytes/clasificación , Pan troglodytes/genética , Filogenia , Polimorfismo de Nucleótido Simple/genética , Densidad de Población
15.
BMC Genomics ; 14: 363, 2013 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-23721540

RESUMEN

BACKGROUND: The only known albino gorilla, named Snowflake, was a male wild born individual from Equatorial Guinea who lived at the Barcelona Zoo for almost 40 years. He was diagnosed with non-syndromic oculocutaneous albinism, i.e. white hair, light eyes, pink skin, photophobia and reduced visual acuity. Despite previous efforts to explain the genetic cause, this is still unknown. Here, we study the genetic cause of his albinism and making use of whole genome sequencing data we find a higher inbreeding coefficient compared to other gorillas. RESULTS: We successfully identified the causal genetic variant for Snowflake's albinism, a non-synonymous single nucleotide variant located in a transmembrane region of SLC45A2. This transporter is known to be involved in oculocutaneous albinism type 4 (OCA4) in humans. We provide experimental evidence that shows that this amino acid replacement alters the membrane spanning capability of this transmembrane region. Finally, we provide a comprehensive study of genome-wide patterns of autozygogosity revealing that Snowflake's parents were related, being this the first report of inbreeding in a wild born Western lowland gorilla. CONCLUSIONS: In this study we demonstrate how the use of whole genome sequencing can be extended to link genotype and phenotype in non-model organisms and it can be a powerful tool in conservation genetics (e.g., inbreeding and genetic diversity) with the expected decrease in sequencing cost.


Asunto(s)
Genómica , Gorilla gorilla/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Endogamia , Secuencia de Aminoácidos , Animales , Femenino , Heterocigoto , Masculino , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Repeticiones de Microsatélite/genética , Datos de Secuencia Molecular , Mutación , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...