Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Microbiol ; 96(2): 405-18, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25626518

RESUMEN

The ascomycete Trichoderma reesei is an industrial producer of cellulolytic and hemicellulolytic enzymes, and serves as a prime model for their genetic regulation. Most of its (hemi-)cellulolytic enzymes are obligatorily dependent on the transcriptional activator XYR1. Here, we investigated the nucleo-cytoplasmic shuttling mechanism that transports XYR1 across the nuclear pore complex. We identified 14 karyopherins in T. reesei, of which eight were predicted to be involved in nuclear import, and produced single gene-deletion mutants of all. We found KAP8, an ortholog of Aspergillus nidulans KapI, and Saccharomyces cerevisiae Kap121/Pse1, to be essential for nuclear recruitment of GFP-XYR1 and cellulase gene expression. Transformation with the native gene rescued this effect. Transcriptomic analyses of Δkap8 revealed that under cellulase-inducing conditions 42 CAZymes, including all cellulases and hemicellulases known to be under XYR1 control, were significantly down-regulated. Δkap8 strains were capable of forming fertile fruiting bodies but exhibited strongly reduced conidiation both in light and darkness, and showed enhanced sensitivity towards abiotic stress, including high osmotic pressure, low pH and high temperature. Together, these data underscore the significance of nuclear import of XYR1 in cellulase and hemicellulase gene regulation in T. reesei, and identify KAP8 as the major karyopherin required for this process.


Asunto(s)
Núcleo Celular/metabolismo , Celulasa/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Esporas Fúngicas/crecimiento & desarrollo , Trichoderma/metabolismo , beta Carioferinas/metabolismo , Transporte Activo de Núcleo Celular , Núcleo Celular/enzimología , Núcleo Celular/genética , Celulasa/metabolismo , Proteínas Fúngicas/genética , Transporte de Proteínas , Reproducción Asexuada , Esporas Fúngicas/enzimología , Esporas Fúngicas/genética , Esporas Fúngicas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Trichoderma/enzimología , Trichoderma/genética , Trichoderma/crecimiento & desarrollo , beta Carioferinas/genética
2.
Biochemistry ; 52(14): 2453-60, 2013 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-23506391

RESUMEN

L-Xylulose reductases belong to the superfamily of short chain dehydrogenases and reductases (SDRs) and catalyze the NAD(P)H-dependent reduction of L-xylulose to xylitol in L-arabinose and glucuronic acid catabolism. Here we report the identification of a novel L-xylulose reductase LXR3 in the fungus Trichoderma reesei by a bioinformatic approach in combination with a functional analysis. LXR3, a 31 kDa protein, catalyzes the reduction of L-xylulose to xylitol via NADPH and is also able to convert D-xylulose, D-ribulose, L-sorbose, and D-fructose to their corresponding polyols. Transcription of lxr3 is specifically induced by L-arabinose and L-arabitol. Deletion of lxr3 affects growth on L-arabinose and L-arabitol and reduces total NADPH-dependent LXR activity in cell free extracts. A phylogenetic analysis of known L-xylulose reductases shows that LXR3 is phylogenetically different from the Aspergillus niger L-xylulose reductase LxrA and, moreover, that all identified true L-xylulose reductases belong to different clades within the superfamily of SDRs. This indicates that the enzymes responsible for the reduction of L-xylulose in L-arabinose and glucuronic acid catabolic pathways have evolved independently and that even the fungal LXRs of the L-arabinose catabolic pathway have evolved in different clades of the superfamily of SDRs.


Asunto(s)
Arabinosa/metabolismo , Deshidrogenasas del Alcohol de Azúcar/metabolismo , Trichoderma/enzimología , Eliminación de Gen , Genes Fúngicos , Filogenia , Deshidrogenasas del Alcohol de Azúcar/genética , Trichoderma/genética , Trichoderma/crecimiento & desarrollo , Trichoderma/metabolismo , Xilulosa/metabolismo
3.
Eukaryot Cell ; 12(3): 390-8, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23291620

RESUMEN

The ascomycete Trichoderma reesei is a paradigm for the regulation and production of plant cell wall-degrading enzymes, including xylanases. Four xylanases, including XYN1 and XYN2 of glycosyl hydrolase family 11 (GH11), the GH10 XYN3, and the GH30 XYN4, were already described. By genome mining, we identified a fifth xylanase, XYN5, belonging to GH11. Transcriptional analysis reveals that the expression of all xylanases but xyn3 is induced by D-xylose, dependent on the cellulase and xylanase regulator XYR1 and negatively regulated by the carbon catabolite repressor CRE1. Impairment of D-xylose catabolism at the D-xylose reductase and xylitol dehydrogenase step strongly enhanced induction by D-xylose. Knockout of the L-xylulose reductase-encoding gene lxr3, which connects the D-xylose and L-arabinose catabolic pathways, had no effect on xylanase induction. Besides the induction by D-xylose, the T. reesei xylanases were also induced by L-arabinose, and this induction was also enhanced in knockout mutants in L-arabinose reductase (xyl1), L-arabitol dehydrogenase (lad1), and L-xylulose reductase (lxr3). Induction by L-arabinose was also XYR1 dependent. Analysis of intracellular polyols revealed accumulation of xylitol in all strains only during incubation with D-xylose and accumulation of L-arabitol only during incubation with L-arabinose. Induction by L-arabinose could be further stimulated by addition of D-xylose. We conclude that the expression of the T. reesei xylanases can be induced by both D-xylose and L-arabinose, but independently of each other and by using different inducing metabolites.


Asunto(s)
Arabinosa/metabolismo , Regulación Fúngica de la Expresión Génica , Transcripción Genética , Trichoderma/genética , Xilosa/metabolismo , Xilosidasas/genética , Genoma Fúngico , Mutación , Filogenia , Deshidrogenasas del Alcohol de Azúcar/genética , Deshidrogenasas del Alcohol de Azúcar/metabolismo , Trichoderma/metabolismo , Xilosidasas/metabolismo
4.
Subcell Biochem ; 64: 367-90, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23080260

RESUMEN

The filamentous fungus T. reeseiis today a paradigm for the commercial scale production of different plant cell wall degrading enzymes mainly cellulases and hemicellulases. Its enzymes have a long history of safe use in industry and well established applications are found within the pulp, paper, food, feed or textile processing industries. However, when these enzymes are to be used for the saccharification of cellulosic plant biomass to simple sugars which can be further converted to biofuels or other biorefinery products, and thus compete with chemicals produced from fossil sources, additional efforts are needed to reduce costs and maximize yield and efficiency of the produced enzyme mixtures. One approach to this end is the use of genetic engineering to manipulate the biochemical and regulatory pathways that operate during enzyme production and control enzyme yield. This review aims at a description of the state of art in this area.


Asunto(s)
Celulasa/genética , Genes Reguladores , Glicósido Hidrolasas/genética , Ingeniería Metabólica/métodos , Trichoderma/enzimología , Celulasa/metabolismo , Inducción Enzimática/genética , Regulación Enzimológica de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Glicósido Hidrolasas/metabolismo , Hidrólisis , Redes y Vías Metabólicas/genética , Trichoderma/genética
5.
J Biol Chem ; 287(31): 26010-8, 2012 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-22654107

RESUMEN

In addition to the well established Leloir pathway for the catabolism of d-galactose in fungi, the oxidoreductive pathway has been recently identified. In this oxidoreductive pathway, D-galactose is converted via a series of NADPH-dependent reductions and NAD(+)-dependent oxidations into D-fructose. The pathway intermediates include galactitol, L-xylo-3-hexulose, and d-sorbitol. This study identified the missing link in the pathway, the L-xylo-3-hexulose reductase that catalyzes the conversion of L-xylo-3-hexulose to D-sorbitol. In Trichoderma reesei (Hypocrea jecorina) and Aspergillus niger, we identified the genes lxr4 and xhrA, respectively, that encode the l-xylo-3-hexulose reductases. The deletion of these genes resulted in no growth on galactitol and in reduced growth on D-galactose. The LXR4 was heterologously expressed, and the purified protein showed high specificity for L-xylo-3-hexulose with a K(m) = 2.0 ± 0.5 mm and a V(max) = 5.5 ± 1.0 units/mg. We also confirmed that the product of the LXR4 reaction is D-sorbitol.


Asunto(s)
Aspergillus niger/enzimología , Galactosa/metabolismo , Deshidrogenasas del Alcohol de Azúcar/genética , Trichoderma/enzimología , Aspergillus niger/crecimiento & desarrollo , Proteínas Fúngicas/genética , Eliminación de Gen , Regulación Fúngica de la Expresión Génica , Hexosas/química , Hexosas/metabolismo , Cetosas/química , Cetosas/metabolismo , Cinética , Redes y Vías Metabólicas , NADP/química , Oxidación-Reducción , Sorbitol/metabolismo , Especificidad por Sustrato , Deshidrogenasas del Alcohol de Azúcar/química , Deshidrogenasas del Alcohol de Azúcar/metabolismo , Transcripción Genética , Trichoderma/crecimiento & desarrollo
6.
Plant Physiol ; 158(4): 1976-87, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22323776

RESUMEN

Adventitious root formation is essential for the propagation of many commercially important plant species and involves the formation of roots from nonroot tissues such as stems or leaves. Here, we demonstrate that the plant hormone strigolactone suppresses adventitious root formation in Arabidopsis (Arabidopsis thaliana) and pea (Pisum sativum). Strigolactone-deficient and response mutants of both species have enhanced adventitious rooting. CYCLIN B1 expression, an early marker for the initiation of adventitious root primordia in Arabidopsis, is enhanced in more axillary growth2 (max2), a strigolactone response mutant, suggesting that strigolactones restrain the number of adventitious roots by inhibiting the very first formative divisions of the founder cells. Strigolactones and cytokinins appear to act independently to suppress adventitious rooting, as cytokinin mutants are strigolactone responsive and strigolactone mutants are cytokinin responsive. In contrast, the interaction between the strigolactone and auxin signaling pathways in regulating adventitious rooting appears to be more complex. Strigolactone can at least partially revert the stimulatory effect of auxin on adventitious rooting, and auxin can further increase the number of adventitious roots in max mutants. We present a model depicting the interaction of strigolactones, cytokinins, and auxin in regulating adventitious root formation.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Hipocótilo/efectos de los fármacos , Hipocótilo/crecimiento & desarrollo , Lactonas/farmacología , Pisum sativum/crecimiento & desarrollo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Citocininas/farmacología , Hipocótilo/efectos de la radiación , Ácidos Indolacéticos/farmacología , Luz , Modelos Biológicos , Mutación/genética , Pisum sativum/efectos de los fármacos , Pisum sativum/genética , Pisum sativum/efectos de la radiación , Raíces de Plantas/genética , Raíces de Plantas/efectos de la radiación , Xilema/efectos de los fármacos , Xilema/metabolismo , Xilema/efectos de la radiación
7.
Proc Natl Acad Sci U S A ; 108(50): 20242-7, 2011 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-22123958

RESUMEN

Long distance cell-to-cell communication is critical for the development of multicellular organisms. In this respect, plants are especially demanding as they constantly integrate environmental inputs to adjust growth processes to different conditions. One example is thickening of shoots and roots, also designated as secondary growth. Secondary growth is mediated by the vascular cambium, a stem cell-like tissue whose cell-proliferating activity is regulated over a long distance by the plant hormone auxin. How auxin signaling is integrated at the level of cambium cells and how cambium activity is coordinated with other growth processes are largely unknown. Here, we provide physiological, genetic, and pharmacological evidence that strigolactones (SLs), a group of plant hormones recently described to be involved in the repression of shoot branching, positively regulate cambial activity and that this function is conserved among species. We show that SL signaling in the vascular cambium itself is sufficient for cambium stimulation and that it interacts strongly with the auxin signaling pathway. Our results provide a model of how auxin-based long-distance signaling is translated into cambium activity and suggest that SLs act as general modulators of plant growth forms linking the control of shoot branching with the thickening of stems and roots.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Lactonas/metabolismo , Transducción de Señal , Arabidopsis/efectos de los fármacos , Cámbium/citología , Cámbium/efectos de los fármacos , Cámbium/crecimiento & desarrollo , Inflorescencia/citología , Inflorescencia/genética , Inflorescencia/crecimiento & desarrollo , Lactonas/farmacología , Mutación/genética , Especificidad de Órganos/efectos de los fármacos , Tallos de la Planta/citología , Tallos de la Planta/efectos de los fármacos , Tallos de la Planta/crecimiento & desarrollo , Transducción de Señal/efectos de los fármacos , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...