Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 934: 173288, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38768725

RESUMEN

The spread of antimicrobial resistance (AMR) in agricultural systems via irrigation water is a serious public health issue as it can be transmitted to humans through the food chain. Therefore, understanding the dissemination routes of antibiotic resistance genes (ARGs) in agricultural systems is crucial for the assessment of health risks associated with eating fresh vegetables such as spinach and radish irrigated with treated municipal wastewater (TMW). In this study, we investigated the bacterial community structure and resistome in the soil-plant-earthworm continuum after irrigation of spinach and radish with TMW containing the antibiotics trimethoprim (TMP), sulfamethoxazole (SMZ), and sulfapyridine (SPD) using 16S rRNA gene sequencing and high throughput quantitative PCR (HT-qPCR). The study was conducted in two phases: Phase I involved eight weeks of spinach and radish production using TMW for irrigation, whereas Phase II entailed three weeks of earthworm exposure to contaminated plant material obtained in Phase I. The 16S data indicated that the rhizosphere bacterial community composition and structure were more resilient to antibiotic residuals in the irrigated water, with radish showing less susceptibility than spinach than those of bulk soils. The HT-qPCR analysis revealed that a total of 271 ARGs (out of 285) and 9 mobile genetic elements (MGEs) (out of 10) were detected in all samples. Higher diversity and abundance of ARGs were observed for samples irrigated with higher concentrations of antibiotics in both spinach and radish treatments. However, compared to spinach, radish ARG dynamics in the soil biome were more stable due to the change of antibiotic introduction to the soil. At the class level, multi-drug resistance (MDR) class was altered significantly by the presence of antibiotics in irrigation water. Compared to earthworm fecal samples, their corresponding soil environments showed a higher number of detected ARGs, suggesting that earthworms could play a role in reducing ARG dissemination in the soil environments. These findings will not only provide insight into the dissemination of ARGs in agricultural environments due to antibiotic residuals in irrigated water but could help understand the potential human health risks associated with ARGs.


Asunto(s)
Riego Agrícola , Aguas Residuales , Aguas Residuales/microbiología , Eliminación de Residuos Líquidos/métodos , Farmacorresistencia Microbiana/genética , Microbiología del Suelo , Antibacterianos/análisis , Animales , Oligoquetos , Agricultura/métodos , Ecosistema
2.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38365250

RESUMEN

Biological nitrogen fixation by microbial diazotrophs can contribute significantly to nitrogen availability in non-nodulating plant species. In this study of molecular mechanisms and gene expression relating to biological nitrogen fixation, the aerobic nitrogen-fixing endophyte Burkholderia vietnamiensis, strain WPB, isolated from Populus trichocarpa served as a model for endophyte-poplar interactions. Nitrogen-fixing activity was observed to be dynamic on nitrogen-free medium with a subset of colonies growing to form robust, raised globular like structures. Secondary ion mass spectrometry (NanoSIMS) confirmed that N-fixation was uneven within the population. A fluorescent transcriptional reporter (GFP) revealed that the nitrogenase subunit nifH is not uniformly expressed across genetically identical colonies of WPB and that only ~11% of the population was actively expressing the nifH gene. Higher nifH gene expression was observed in clustered cells through monitoring individual bacterial cells using single-molecule fluorescence in situ hybridization. Through 15N2 enrichment, we identified key nitrogenous metabolites and proteins synthesized by WPB and employed targeted metabolomics in active and inactive populations. We cocultivated WPB Pnif-GFP with poplar within a RhizoChip, a synthetic soil habitat, which enabled direct imaging of microbial nifH expression within root epidermal cells. We observed that nifH expression is localized to the root elongation zone where the strain forms a unique physical interaction with the root cells. This work employed comprehensive experimentation to identify novel mechanisms regulating both biological nitrogen fixation and beneficial plant-endophyte interactions.


Asunto(s)
Fijación del Nitrógeno , Populus , Fijación del Nitrógeno/fisiología , Populus/genética , Populus/metabolismo , Endófitos/genética , Oxidorreductasas/genética , Hibridación Fluorescente in Situ , Nitrogenasa/genética , Nitrogenasa/metabolismo , Nitrógeno
3.
J Lab Chem Educ ; 7(1): 1-7, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-35999888

RESUMEN

Understanding molecular structure and its influence on chemical reactivity is a fundamental component in Chemistry curriculum. For example, acidic protons ionize, or ionic solids dissociate to form charge, inducing electrolyte properties depending on molecular structure. An active learning lab is designed to demonstrate connection between electrolyte behavior and structure of various molecules. Experiments are shared to show interdisciplinary aspect of electrolytes within biology and chemistry. Specifically, how biomolecules exhibit electrolyte behavior due to chemical composition.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...