Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Hum Mutat ; 39(10): 1428-1441, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30007050

RESUMEN

Atrioventricular septal defect (AVSD) may occur as part of a complex disorder (e.g., Down syndrome, heterotaxy), or as isolate cardiac defect. Multiple lines of evidence support a role of calcineurin/NFAT signaling in AVSD, and mutations in CRELD1, a protein functioning as a regulator of calcineurin/NFAT signaling have been reported in a small fraction of affected subjects. In this study, 22 patients with isolated AVSD and 38 with AVSD and heterotaxy were screened for NFATC1 gene mutations. Sequence analysis identified three missense variants in three individuals, including a subject with isolated AVSD [p.(Ala367Val)], an individual with AVSD and heterotaxy [p.(Val210Met)], and a subject with AVSD, heterotaxy, and oculo-auriculo-vertebral spectrum (OAVS) [p.(Ala696Thr)], respectively. The latter was also heterozygous for a missense change in TBX1 [p.(Pro86Leu)]. Targeted resequencing of genes associated with AVSD, heterotaxy, or OAVS excluded additional hits in the three mutation-positive subjects. Functional characterization of NFATC1 mutants documented defective nuclear translocation and decreased transcriptional transactivation activity. When expressed in zebrafish, the three NFATC1 mutants caused cardiac looping defects and altered atrioventricular canal patterning, providing evidence of their functional relevance in vivo. Our findings support a role of defective NFATC1 function in the etiology of isolated and heterotaxy-related AVSD.


Asunto(s)
Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Defectos de los Tabiques Cardíacos/genética , Heterocigoto , Mutación Missense , Factores de Transcripción NFATC/genética , Alelos , Animales , Deleción Cromosómica , Femenino , Técnica del Anticuerpo Fluorescente , Expresión Génica , Genes Reporteros , Defectos de los Tabiques Cardíacos/diagnóstico , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Factores de Transcripción NFATC/metabolismo , Fenotipo , Análisis de Secuencia de ADN , Pez Cebra
2.
PLoS One ; 9(4): e94884, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24736444

RESUMEN

The PTPN11 (protein-tyrosine phosphatase, non-receptor type 11) gene encodes SHP2, a cytoplasmic PTP that is essential for vertebrate development. Mutations in PTPN11 are associated with Noonan and LEOPARD syndrome. Human patients with these autosomal dominant disorders display various symptoms, including short stature, craniofacial defects and heart abnormalities. We have used the zebrafish as a model to investigate the role of Shp2 in embryonic development. The zebrafish genome encodes two ptpn11 genes, ptpn11a and ptpn11b. Here, we report that ptpn11a is expressed constitutively and ptpn11b expression is strongly upregulated during development. In addition, the products of both ptpn11 genes, Shp2a and Shp2b, are functional. Target-selected inactivation of ptpn11a and ptpn11b revealed that double homozygous mutants are embryonic lethal at 5-6 days post fertilization (dpf). Ptpn11a-/-ptpn11b-/- embryos showed pleiotropic defects from 4 dpf onwards, including reduced body axis extension and craniofacial defects, which was accompanied by low levels of phosphorylated Erk at 5 dpf. Interestingly, defects in homozygous ptpn11a-/- mutants overlapped with defects in the double mutants albeit they were milder, whereas ptpn11b-/- single mutants did not show detectable developmental defects and were viable and fertile. Ptpn11a-/-ptpn11b-/- mutants were rescued by expression of exogenous ptpn11a and ptpn11b alike, indicating functional redundance of Shp2a and Shp2b. The ptpn11 mutants provide a good basis for further unravelling of the function of Shp2 in vertebrate development.


Asunto(s)
Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Proteínas de Pez Cebra/genética , Pez Cebra/embriología , Pez Cebra/genética , Animales , Secuencia de Bases , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Técnicas de Inactivación de Genes , Humanos , Sistema de Señalización de MAP Quinasas/genética , Mutación , Fenotipo , Proteína Tirosina Fosfatasa no Receptora Tipo 11/deficiencia , ARN Mensajero/genética , Proteínas de Pez Cebra/deficiencia
3.
Mech Dev ; 124(2): 129-36, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17157484

RESUMEN

Morphogenetic cell movements during gastrulation shape the vertebrate embryo bodyplan. Non-canonical Wnt signaling has been established to regulate convergence and extension cell movements that mediate anterior-posterior axis elongation. In recent years, many other factors have been implicated in the process by modulation of non-canonical Wnt signaling or by different, unknown mechanisms. We have found that the Src family kinases, Fyn and Yes, are required for normal convergence and extension cell movements in zebrafish embryonic development and they signal in parallel to non-canonical Wnts, eventually converging on a common downstream factor, RhoA. Here, we report that Csk, a negative regulator of Src family kinases has a role in gastrulation cell movements as well. Csk knock down induced a phenotype that was similar to the defects observed after knock down of Fyn and Yes, in that gastrulation cell movements were impaired, without affecting cell fate. The Csk knock down phenotype was rescued by simultaneous partial knock down of Fyn and Yes. We conclude that Csk acts upstream of Fyn and Yes to control vertebrate gastrulation cell movements.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...