Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 2814: 209-222, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38954208

RESUMEN

Identifying the mechanisms of action of existing and novel drugs is essential for the development of new compounds for therapeutic and commercial use. Here we provide a technique to identify these mechanisms through isolating mutant cell lines that show resistance to drug-induced phenotypes using Dictyostelium discoideum REMI libraries. This approach provides a robust and rapid chemical-genetic screening technique that enables an unbiased approach to identify proteins and molecular pathways that control drug sensitivity. Mutations that result in drug resistance often occur in target proteins thus identifying the specific protein targets for drugs and bioactive natural products. Following the identification of a list of putative molecular targets user selected compound targets can be analyzed to confirm and validate direct inhibitory effects.


Asunto(s)
Dictyostelium , Mutación , Dictyostelium/genética , Dictyostelium/metabolismo , Enzimas de Restricción del ADN/metabolismo , Biblioteca de Genes , Resistencia a Medicamentos/genética , Bibliotecas de Moléculas Pequeñas/farmacología
2.
Plant Commun ; 5(6): 100846, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38460510

RESUMEN

Allelochemicals represent a class of natural products released by plants as root, leaf, and fruit exudates that interfere with the growth and survival of neighboring plants. Understanding how allelochemicals function to regulate plant responses may provide valuable new approaches to better control plant function. One such allelochemical, Myrigalone A (MyA) produced by Myrica gale, inhibits seed germination and seedling growth through an unknown mechanism. Here, we investigate MyA using the tractable model Dictyostelium discoideum and reveal that its activity depends on the conserved homolog of the plant ethylene synthesis protein 1-aminocyclopropane-1-carboxylic acid oxidase (ACO). Furthermore, in silico modeling predicts the direct binding of MyA to ACO within the catalytic pocket. In D. discoideum, ablation of ACO mimics the MyA-dependent developmental delay, which is partially restored by exogenous ethylene, and MyA reduces ethylene production. In Arabidopsis thaliana, MyA treatment delays seed germination, and this effect is rescued by exogenous ethylene. It also mimics the effect of established ACO inhibitors on root and hypocotyl extension, blocks ethylene-dependent root hair production, and reduces ethylene production. Finally, in silico binding analyses identify a range of highly potent ethylene inhibitors that block ethylene-dependent response and reduce ethylene production in Arabidopsis. Thus, we demonstrate a molecular mechanism by which the allelochemical MyA reduces ethylene biosynthesis and identify a range of ultrapotent inhibitors of ethylene-regulated responses.


Asunto(s)
Arabidopsis , Etilenos , Feromonas , Etilenos/biosíntesis , Etilenos/metabolismo , Feromonas/farmacología , Feromonas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/efectos de los fármacos , Germinación/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...