Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Ann Bot ; 129(1): 37-52, 2022 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-34549262

RESUMEN

BACKGROUND AND AIMS: ATP-dependent phosphofructokinases (PFKs) catalyse phosphorylation of the carbon-1 position of fructose-6-phosphate, to form fructose-1,6-bisphosphate. In the cytosol, this is considered a key step in channelling carbon into glycolysis. Arabidopsis thaliana has seven genes encoding PFK isoforms, two chloroplastic and five cytosolic. This study focuses on the four major cytosolic isoforms of PFK in vegetative tissues of A. thaliana. METHODS: We isolated homozygous knockout individual mutants (pfk1, pfk3, pfk6 and pfk7) and two double mutants (pfk1/7 and pfk3/6), and characterized their growth and metabolic phenotypes. KEY RESULTS: In contrast to single mutants and the double mutant pfk3/6 for the hypoxia-responsive isoforms, the double mutant pfk1/7 had reduced PFK activity and showed a clear visual and metabolic phenotype with reduced shoot growth, early flowering and elevated hexose levels. This mutant also has an altered ratio of short/long aliphatic glucosinolates and an altered root-shoot distribution. Surprisingly, this mutant does not show any major changes in short-term carbon flux and in levels of hexose-phosphates. CONCLUSIONS: We conclude that the two isoforms PFK1 and PFK7 are important for sugar homeostasis in leaf metabolism and apparently in source-sink relationships in A. thaliana, while PFK3 and PFK6 only play a minor role under normal growth conditions.


Asunto(s)
Arabidopsis , Fosfofructoquinasas , Hojas de la Planta/enzimología , Azúcares , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Citosol/enzimología , Homeostasis , Fosfofructoquinasas/genética , Fosfofructoquinasas/metabolismo , Azúcares/metabolismo
2.
Antioxidants (Basel) ; 10(3)2021 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-33800095

RESUMEN

The chloroplast primary metabolism is of central importance for plant growth and performance. Therefore, it is tightly regulated in order to adequately respond to multiple environmental conditions. A major fluctuation that plants experience each day is the change between day and night, i.e., the change between assimilation and dissimilation. Among other mechanisms, thioredoxin-mediated redox regulation is an important component of the regulation of plastid-localized metabolic enzymes. While assimilatory processes such as the Calvin-Benson cycle are activated under illumination, i.e., under reducing conditions, carbohydrate degradation is switched off during the day. Previous analyses have identified enzymes of the oxidative pentose phosphate pathway to be inactivated by reduction through thioredoxins. In this work, we present evidence that an enzyme of the plastidic glycolysis, the phosphofructokinase isoform AtPFK5, is also inactivated through reduction by thioredoxins, namely by thioredoxin-f. With the help of chemical oxidation, mutant analyses and further experiments, the highly conserved motif CXDXXC in AtPFK5 was identified as the target sequence for this regulatory mechanism. However, knocking out this isoform in plants had only very mild effects on plant growth and performance, indicating that the complex primary metabolism in plants can overcome a lack in AtPFK5 activity.

3.
Plant Cell Physiol ; 59(3): 500-509, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29281059

RESUMEN

Phytochelatins (PCs) are major chelators of toxic elements including inorganic arsenic (As) in plant cells. Their synthesis confers tolerance and influences within-plant mobility. Previous studies had shown that various metal/metalloid ions differentially activate PC synthesis. Here we identified C-terminal parts involved in arsenite- [As(III)] dependent activation of AtPCS1, the primary Arabidopsis PC synthase. The T-DNA insertion in the AtPCS1 mutant cad1-6 causes a truncation in the C-terminal regulatory domain that differentially affects activation by cadmium (Cd) and zinc (Zn). Comparisons of cad1-6 with the AtPCS1 null mutant cad1-3 and the double mutant of tonoplast PC transporters abcc1/2 revealed As(III) hypersensitivity of cad1-6 equal to that of cad1-3. Both cad1-6 and cad1-3 showed increased As distribution to shoots compared with Col-0, whereas Zn accumulation in shoots was equally lower in cad1-6 and cad1-3. Supporting these phenotypes of cad1-6, PC accumulation in the As(III)-exposed plants were at trace level in both cad1-6 and cad1-3, suggesting that the truncated AtPCS1 of cad1-6 is defective in PCS activity in response to As(III). Analysis of a C-terminal deletion series of AtPCS1 using the PCS-deficient mutant of fission yeast suggested important regions within the C-terminal domain for As(III)-dependent PC synthesis, which were different from the regions previously suggested for Cd- or Zn-dependent activation. Interestingly, we identified a truncated variant more strongly activated than the wild-type protein. This variant could potentially be used as a tool to better restrict As mobility in plants.


Asunto(s)
Aminoaciltransferasas/química , Aminoaciltransferasas/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arsenitos/farmacología , Secuencia de Aminoácidos , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Cisteína/metabolismo , Glutatión/metabolismo , Minerales/metabolismo , Mutación/genética , Fenotipo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/metabolismo , Dominios Proteicos , Proteínas Recombinantes/metabolismo , Schizosaccharomyces/metabolismo , Eliminación de Secuencia , Relación Estructura-Actividad
4.
Front Plant Sci ; 4: 125, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23717315

RESUMEN

Plants possess two types of phosphofructokinase proteins for phosphorylation of fructose-6-phosphate, the ATP-dependent phosphofructokinase (PFK) and the pyrophosphate-(PPi) dependent pyrophosphate-fructose-6-phosphate-phosphotransferase (PFP). During oxygen deficiency ATP levels in rice seedlings are severely reduced, and it is hypothesized that PPi is used as an alternative energy source for the phosphorylation of fructose-6-phosphate during glycolysis. In this study, we analyzed the expression of 15 phosphofructokinase-encoding genes in roots and aerial tissues of anoxia-tolerant rice seedlings in response to anoxic stress and compared our data with transcript profiles obtained from microarray analyses. Furthermore, the intracellular localization of rice PFK proteins was determined, and the PFK and PFP isoforms were grouped in a phylogenetic tree. Two PFK and two PFP transcripts accumulated during anoxic stress, whereas mRNA levels of four PFK and three PFP genes were decreased. The total specific activity of both PFK and PFP changed only slightly during a 24-h anoxia treatment. It is assumed that expression of different isoforms and their catalytic properties differ during normoxic and anoxic conditions and contribute to balanced glycolytic activity during the low-oxygen stress. These characterizations of phosphofructokinase genes and the comparison to other plant species allowed us to suggest candidate rice genes for adaptation to anoxic stress.

5.
Physiol Plant ; 143(1): 41-9, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21615413

RESUMEN

The AR2/ERF transcription factor genes ERF71/HRE2 and ERF73/HRE1 were induced at hypoxic conditions in Arabidopsis thaliana roots. ERF73/HRE1 but not its related gene ERF71/HRE2 was furthermore regulated by ethylene. Treatment with 1 ppm ethylene promoted ERF73/HRE1 expression fivefold. This induction did not occur in the presence of the ethylene receptor inhibitor 1-methylcyclopropene. ERF73/HRE1 expression positively regulated alcohol dehydrogenase (ADH) activity, which was analyzed as a marker enzyme for metabolic adaptation to hypoxic stress. The knock out lines erf73/hre1-1 and erf73/hre1-2 showed lowered ADH activity; the overexpressing lines ERF73/HRE1-ox1 and ERF73/HRE1-ox5 displayed elevated ADH activity. Treatment of wild-type Arabidopsis with 5% O2 and 1 ppm ethylene resulted in higher induction of ADH activity than that observed with 5% O2 or 1 ppm ethylene alone. ERF73/HRE1-ox1 and ERF73/HRE1-ox5 plants that were exposed to 5% O2 did not show enhanced ADH activity after treatment with ethylene, indicating that the ethylene response with respect to ADH activity was saturated in the ERF73/HRE1ox lines. In contrast, erf73/hre1-1 and erf73/hre1-2 lines displayed ethylene-dependent ADH activity pointing to redundant factor(s) that can mediate ethylene regulation of ADH activity in the Arabidopsis root. Our data show that ethylene regulates metabolic adaptation to low oxygen stress in the Arabidopsis root through ERF73/ HRE1.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Hipoxia de la Célula/genética , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Factores de Transcripción/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Etilenos/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Técnicas de Inactivación de Genes , Genes de Plantas , Reguladores del Crecimiento de las Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...