Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
JCI Insight ; 8(18)2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37581943

RESUMEN

Glutaminolysis is a hallmark of the activation and metabolic reprogramming of T cells. Isotopic tracer analyses of antigen-activated effector CD8+ T cells revealed that glutamine is the principal carbon source for the biosynthesis of polyamines putrescine, spermidine, and spermine. These metabolites play critical roles in activation-induced T cell proliferation, as well as for the production of hypusine, which is derived from spermidine and is covalently linked to the translation elongation factor eukaryotic translation initiation factor 5A (eIF5A). Here, we demonstrated that the glutamine/polyamine/hypusine axis controlled the expression of CD69, an important regulator of tissue-resident memory T cells (Trm). Inhibition of this circuit augmented the development of Trm cells ex vivo and in vivo in the BM, a well-established niche for Trm cells. Furthermore, blocking the polyamine/hypusine axis augmented CD69 expression as well as IFN-γ and TNF-α production in (a) human CD8+ T cells from peripheral blood and sarcoma tumor infiltrating lymphocytes and (b) human CD8+ CAR-T cells. Collectively, these findings support the notion that the polyamine-hypusine circuit can be exploited to modulate Trm cells for therapeutic benefit.


Asunto(s)
Poliaminas , Espermidina , Humanos , Poliaminas/metabolismo , Espermidina/metabolismo , Células T de Memoria , Glutamina/metabolismo , Linfocitos T CD8-positivos/metabolismo
2.
Cancer Immunol Res ; 10(10): 1263-1279, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-35969234

RESUMEN

Chronic T-cell receptor (TCR) signaling in the tumor microenvironment is known to promote T-cell dysfunction. However, we reasoned that poorly immunogenic tumors may also compromise T cells by impairing their metabolism. To address this, we assessed temporal changes in T-cell metabolism, fate, and function in models of B-cell lymphoma driven by Myc, a promoter of energetics and repressor of immunogenicity. Increases in lymphoma burden most significantly impaired CD4+ T-cell function and promoted regulatory T cell (Treg) and Th1-cell differentiation. Metabolomic analyses revealed early reprogramming of CD4+ T-cell metabolism, reduced glucose uptake, and impaired mitochondrial function, which preceded changes in T-cell fate. In contrast, B-cell lymphoma metabolism remained robust during tumor progression. Finally, mitochondrial functions were impaired in CD4+ and CD8+ T cells in lymphoma-transplanted OT-II and OT-I transgenic mice, respectively. These findings support a model, whereby early, TCR-independent, metabolic interactions with developing lymphomas limits T cell-mediated immune surveillance.


Asunto(s)
Linfoma de Células B , Linfoma , Animales , Linfocitos T CD4-Positivos , Diferenciación Celular , Glucosa/metabolismo , Linfoma/metabolismo , Linfoma de Células B/metabolismo , Ratones , Ratones Transgénicos , Receptores de Antígenos de Linfocitos T/metabolismo , Microambiente Tumoral
3.
Front Med (Lausanne) ; 8: 735585, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34796183

RESUMEN

Ultraviolet radiation exposure (UVR) is a risk factor for cutaneous squamous cell carcinoma (cuSCC) and has been shown to be positively associated with circulating immunosuppressive regulatory T cells ("Tregs"). However, the risk of cuSCC in association with circulating Tregs has not been studied. The aim of this study was to determine whether circulating Treg levels are associated with cuSCC development, particularly in the context of high UVR. Blood and spectrophotometer-based UVR measurements were obtained on 327 immunocompetent individuals undergoing routine skin cancer screenings at baseline and followed for up to 4 years for incident cuSCC development within a prospective cohort study. Proportions of phenotypically distinct Tregs, especially CCR4hi and CLA+ cells which are associated with activation and homing, respectively, were measured by flow cytometry. Tregs in cuSCC tumors were assessed using immunohistochemistry and graded for solar elastosis, a measure of cumulative UVR damage. Of several Treg phenotypes examined, higher levels of circulating CCR4hi Tregs at baseline were significantly associated with increased risk of subsequent cuSCC; those with higher levels of both CCR4hi and UVR were four times more likely to develop cuSCC compared to those with lower levels of both (Hazard Ratio = 4.11, 95% CI = 1.22-13.90). Within cuSCC tumors, CCR4hi Tregs were positively associated with solar elastosis. Results show that a higher proportion of CCR4hi peripheral Tregs predicts incident cuSCC up to 4 years, especially among highly UV-exposed individuals. Research of the underpinning biology of Tregs in UVR-associated skin damage may possibly reveal novel opportunities for screening, prevention, and treatment.

4.
Blood ; 136(7): 857-870, 2020 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-32403132

RESUMEN

Immunomodulatory drugs, such as thalidomide and related compounds, potentiate T-cell effector functions. Cereblon (CRBN), a substrate receptor of the DDB1-cullin-RING E3 ubiquitin ligase complex, is the only molecular target for this drug class, where drug-induced, ubiquitin-dependent degradation of known "neosubstrates," such as IKAROS, AIOLOS, and CK1α, accounts for their biological activity. Far less clear is whether these CRBN E3 ligase-modulating compounds disrupt the endogenous functions of CRBN. We report that CRBN functions in a feedback loop that harnesses antigen-specific CD8+ T-cell effector responses. Specifically, Crbn deficiency in murine CD8+ T cells augments their central metabolism manifested as elevated bioenergetics, with supraphysiological levels of polyamines, secondary to enhanced glucose and amino acid transport, and with increased expression of metabolic enzymes, including the polyamine biosynthetic enzyme ornithine decarboxylase. Treatment with CRBN-modulating compounds similarly augments central metabolism of human CD8+ T cells. Notably, the metabolic control of CD8+ T cells by modulating compounds or Crbn deficiency is linked to increased and sustained expression of the master metabolic regulator MYC. Finally, Crbn-deficient T cells have augmented antigen-specific cytolytic activity vs melanoma tumor cells, ex vivo and in vivo, and drive accelerated and highly aggressive graft-versus-host disease. Therefore, CRBN functions to harness the activation of CD8+ T cells, and this phenotype can be exploited by treatment with drugs.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Linfocitos T CD8-positivos/fisiología , Metabolismo Energético/genética , Activación de Linfocitos/genética , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Linfocitos T CD8-positivos/metabolismo , Células Cultivadas , Inmunomodulación/genética , Melanoma Experimental/patología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos
5.
J Immunol ; 201(11): 3269-3281, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30389774

RESUMEN

UV radiation (UVR) causing DNA damage is a well-documented risk factor for nonmelanoma skin cancer. Although poorly understood, UVR may also indirectly contribute to carcinogenesis by promoting immune evasion. To our knowledge, we report the first epidemiological study designed to investigate the association between quantitative measures of UVR, obtained using a spectrophotometer, and circulating T regulatory (Treg) cells. In addition to total Treg cells, the proportion of functionally distinct Treg cell subsets defined by CD45RA and CD27 phenotypic markers, graded expression of FOXP3 and CD25, and those expressing cutaneous lymphocyte-associated Ag and the chemokine receptor CCR4 were enumerated in 350 individuals undergoing routine skin cancer screening exams and determined not to have prevalent skin cancer. No associations were identified for UVR exposure or the overall proportion of circulating Treg cells; however, Treg cell subpopulations with an activation-associated phenotype, CD45RA-/CD27-, and those expressing cutaneous homing receptors were significantly positively associated with UVR. These subpopulations of Treg cells also differed by age, sex, and race. After stratification by natural skin tone, and adjusting for age and sex, we found that spectrophotometer-based measures of UVR exposure, but not self-reported measures of past sun exposure, were positively correlated with the highest levels of these Treg cell subpopulations, particularly among lighter-skinned individuals. Findings from this large epidemiologic study highlight the diversity of human Treg cell subpopulations associated with UVR, thus raising questions about the specific coordinated expression of CD45RA, CD27, CCR4, and cutaneous lymphocyte-associated Ag on Treg cells and the possibility that UVR contributes to nonmelanoma skin cancer carcinogenesis through Treg cell-mediated immune evasion.


Asunto(s)
Exposición a la Radiación/efectos adversos , Neoplasias Cutáneas/inmunología , Subgrupos de Linfocitos T/inmunología , Linfocitos T Reguladores/inmunología , Rayos Ultravioleta/efectos adversos , Carcinogénesis/efectos de la radiación , Estudios de Cohortes , Detección Precoz del Cáncer , Femenino , Factores de Transcripción Forkhead/metabolismo , Humanos , Tolerancia Inmunológica , Inmunofenotipificación , Antígenos Comunes de Leucocito/metabolismo , Masculino , Persona de Mediana Edad , Receptores CCR4/metabolismo , Neoplasias Cutáneas/epidemiología , Fenómenos Fisiológicos de la Piel , Pigmentación de la Piel , Subgrupos de Linfocitos T/efectos de la radiación , Linfocitos T Reguladores/efectos de la radiación , Escape del Tumor , Miembro 7 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/metabolismo , Estados Unidos/epidemiología
6.
Med Sci (Basel) ; 6(1)2018 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-29517999

RESUMEN

The immune system is remarkably responsive to a myriad of invading microorganisms and provides continuous surveillance against tissue damage and developing tumor cells. To achieve these diverse functions, multiple soluble and cellular components must react in an orchestrated cascade of events to control the specificity, magnitude and persistence of the immune response. Numerous catabolic and anabolic processes are involved in this process, and prominent roles for l-arginine and l-glutamine catabolism have been described, as these amino acids serve as precursors of nitric oxide, creatine, agmatine, tricarboxylic acid cycle intermediates, nucleotides and other amino acids, as well as for ornithine, which is used to synthesize putrescine and the polyamines spermidine and spermine. Polyamines have several purported roles and high levels of polyamines are manifest in tumor cells as well in autoreactive B- and T-cells in autoimmune diseases. In the tumor microenvironment, l-arginine catabolism by both tumor cells and suppressive myeloid cells is known to dampen cytotoxic T-cell functions suggesting there might be links between polyamines and T-cell suppression. Here, we review studies suggesting roles of polyamines in normal immune cell function and highlight their connections to autoimmunity and anti-tumor immune cell function.

7.
J Biol Chem ; 293(16): 6187-6200, 2018 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-29449372

RESUMEN

Upon binding to thalidomide and other immunomodulatory drugs, the E3 ligase substrate receptor cereblon (CRBN) promotes proteosomal destruction by engaging the DDB1-CUL4A-Roc1-RBX1 E3 ubiquitin ligase in human cells but not in mouse cells, suggesting that sequence variations in CRBN may cause its inactivation. Therapeutically, CRBN engagers have the potential for broad applications in cancer and immune therapy by specifically reducing protein expression through targeted ubiquitin-mediated degradation. To examine the effects of defined sequence changes on CRBN's activity, we performed a comprehensive study using complementary theoretical, biophysical, and biological assays aimed at understanding CRBN's nonprimate sequence variations. With a series of recombinant thalidomide-binding domain (TBD) proteins, we show that CRBN sequence variants retain their drug-binding properties to both classical immunomodulatory drugs and dBET1, a chemical compound and targeting ligand designed to degrade bromodomain-containing 4 (BRD4) via a CRBN-dependent mechanism. We further show that dBET1 stimulates CRBN's E3 ubiquitin-conjugating function and degrades BRD4 in both mouse and human cells. This insight paves the way for studies of CRBN-dependent proteasome-targeting molecules in nonprimate models and provides a new understanding of CRBN's substrate-recruiting function.


Asunto(s)
Proteínas Cullin/metabolismo , Péptido Hidrolasas/química , Péptido Hidrolasas/metabolismo , Proteolisis , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Azepinas/farmacología , Proteínas de Ciclo Celular , Línea Celular Tumoral , Secuencia Conservada , Humanos , Factores Inmunológicos/metabolismo , Factores Inmunológicos/farmacología , Lenalidomida/farmacología , Ligandos , Ratones , Sondas Moleculares , Proteínas Nucleares/efectos de los fármacos , Proteínas Nucleares/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Linfocitos T/metabolismo , Talidomida/análogos & derivados , Talidomida/metabolismo , Talidomida/farmacología , Factores de Transcripción/efectos de los fármacos , Factores de Transcripción/metabolismo , Triazoles/farmacología , Ubiquitina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...