Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 14: 1261666, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37799712

RESUMEN

Background and Aims: Intestinal epithelial cells separate the luminal flora from lamina propria immune cells and regulate innate immune responses in the gut. An imbalance of the mucosal immune response and disrupted intestinal barrier integrity contribute to the evolution of inflammatory bowel diseases. Interleukin (IL)-37 has broad anti- inflammatory activity and is expressed by the human intestinal epithelium. Mice ectopically expressing human IL-37 show reduced epithelial damage and inflammation after DSS-induced colitis. Here, we investigated the impact of IL-37 on the innate immune response and tight junction protein expression of mouse intestinal organoids and the modulation of IL37 expression in human intestinal organoids. Methods: Murine intestinal organoids were generated from IL-37tg and wildtype mice. Human ileal organoids were generated from healthy young donors. Results: Expression of transgene IL-37 or recombinant IL-37 protein did not significantly reduce overall proinflammatory cytokine mRNA expression in murine intestinal organoids. However, higher IL37 expression correlated with a reduced proinflammatory cytokine response in murine colonic organoids. IL37 mRNA expression in human ileal organoids was modulated by proinflammatory cytokines showing an increased expression upon TNF-α-stimulation and decreased expression upon IFN-gamma stimulation. Transgene IL-37 expression did not rescue TNF-α-induced changes in morphology as well as ZO-1, occludin, claudin-2, and E-cadherin expression patterns of murine jejunal organoids. Conclusions: We speculate that the anti-inflammatory activity of IL-37 in the intestine is mainly mediated by lamina propria immune cells protecting intestinal epithelial integrity.


Asunto(s)
Mucosa Intestinal , Factor de Necrosis Tumoral alfa , Humanos , Ratones , Animales , Factor de Necrosis Tumoral alfa/metabolismo , Inmunidad Innata , Citocinas/metabolismo , ARN Mensajero/metabolismo , Interleucina-1/genética , Interleucina-1/metabolismo
2.
Nat Commun ; 14(1): 3025, 2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-37230989

RESUMEN

The cellular organization of gastrointestinal crypts is orchestrated by different cells of the stromal niche but available in vitro models fail to fully recapitulate the interplay between epithelium and stroma. Here, we establish a colon assembloid system comprising the epithelium and diverse stromal cell subtypes. These assembloids recapitulate the development of mature crypts resembling in vivo cellular diversity and organization, including maintenance of a stem/progenitor cell compartment in the base and their maturation into secretory/absorptive cell types. This process is supported by self-organizing stromal cells around the crypts that resemble in vivo organization, with cell types that support stem cell turnover adjacent to the stem cell compartment. Assembloids that lack BMP receptors either in epithelial or stromal cells fail to undergo proper crypt formation. Our data highlight the crucial role of bidirectional signaling between epithelium and stroma, with BMP as a central determinant of compartmentalization along the crypt axis.


Asunto(s)
Tracto Gastrointestinal , Mucosa Intestinal , Diferenciación Celular , Mucosa Intestinal/metabolismo , Transducción de Señal , Células Madre/metabolismo
3.
J Clin Invest ; 132(21)2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36099044

RESUMEN

The stomach corpus epithelium is organized into anatomical units that consist of glands and pits. Mechanisms that control the cellular organization of corpus glands and enable their recovery upon injury are not well understood. R-spondin 3 (RSPO3) is a WNT-signaling enhancer that regulates stem cell behavior in different organs. Here, we investigated the function of RSPO3 in the corpus during homeostasis, upon chief and/or parietal cell loss, and during chronic Helicobacter pylori infection. Using organoid culture and conditional mouse models, we demonstrate that RSPO3 is a critical driver of secretory cell differentiation in the corpus gland toward parietal and chief cells, while its absence promoted pit cell differentiation. Acute loss of chief and parietal cells induced by high dose tamoxifen - or merely the depletion of LGR5+ chief cells - caused an upregulation of RSPO3 expression, which was required for the initiation of a coordinated regenerative response via the activation of yes-associated protein (YAP) signaling. This response enabled a rapid recovery of the injured secretory gland cells. However, in the context of chronic H. pylori infection, the R-spondin-driven regeneration was maintained long term, promoting severe glandular hyperproliferation and the development of premalignant metaplasia.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Ratones , Animales , Helicobacter pylori/metabolismo , Infecciones por Helicobacter/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Mucosa Gástrica/metabolismo , Metaplasia/metabolismo , Metaplasia/patología , Estómago/patología , Regeneración , Neoplasias Gástricas/metabolismo
4.
EMBO J ; 41(13): e109996, 2022 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-35767364

RESUMEN

Helicobacter pylori is a pathogen that colonizes the stomach and causes chronic gastritis. Helicobacter pylori can colonize deep inside gastric glands, triggering increased R-spondin 3 (Rspo3) signaling. This causes an expansion of the "gland base module," which consists of self-renewing stem cells and antimicrobial secretory cells and results in gland hyperplasia. The contribution of Rspo3 receptors Lgr4 and Lgr5 is not well explored. Here, we identified that Lgr4 regulates Lgr5 expression and is required for H. pylori-induced hyperplasia and inflammation, while Lgr5 alone is not. Using conditional knockout mice, we reveal that R-spondin signaling via Lgr4 drives proliferation of stem cells and also induces NF-κB activity in the proliferative stem cells. Upon exposure to H. pylori, the Lgr4-driven NF-κB activation is responsible for the expansion of the gland base module and simultaneously enables chemokine expression in stem cells, resulting in gland hyperplasia and neutrophil recruitment. This demonstrates a connection between R-spondin-Lgr and NF-κB signaling that links epithelial stem cell behavior and inflammatory responses to gland-invading H. pylori.


Asunto(s)
Helicobacter pylori , Animales , Hiperplasia/metabolismo , Hiperplasia/patología , Inflamación/patología , Ratones , FN-kappa B/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Células Madre/metabolismo , Estómago
5.
Nat Commun ; 13(1): 1577, 2022 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-35332152

RESUMEN

Helicobacter pylori causes gastric inflammation, gland hyperplasia and is linked to gastric cancer. Here, we studied the interplay between gastric epithelial stem cells and their stromal niche under homeostasis and upon H. pylori infection. We find that gastric epithelial stem cell differentiation is orchestrated by subsets of stromal cells that either produce BMP inhibitors in the gland base, or BMP ligands at the surface. Exposure to BMP ligands promotes a feed-forward loop by inducing Bmp2 expression in the epithelial cells themselves, enforcing rapid lineage commitment to terminally differentiated mucous pit cells. H. pylori leads to a loss of stromal and epithelial Bmp2 expression and increases expression of BMP inhibitors, promoting self-renewal of stem cells and accumulation of gland base cells, which we mechanistically link to IFN-γ signaling. Mice that lack IFN-γ signaling show no alterations of BMP gradient upon infection, while exposure to IFN-γ resembles H. pylori-driven mucosal responses.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Animales , Células Epiteliales/metabolismo , Mucosa Gástrica/metabolismo , Infecciones por Helicobacter/metabolismo , Inflamación/metabolismo , Ligandos , Ratones
6.
Life Sci Alliance ; 5(4)2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35064075

RESUMEN

Differentiation and lineage specification are controlled by cooperation of growth factor signalling. The involvement of epigenetic regulators in lineage specification remains largely elusive. Here, we show that the histone methyltransferase Mll1 prevents intestinal progenitor cells from differentiation, whereas it is also involved in secretory lineage specification of Paneth and goblet cells. Using conditional mutagenesis in mice and intestinal organoids, we demonstrate that loss of Mll1 renders intestinal progenitor cells permissive for Wnt-driven secretory differentiation. However, Mll1-deficient crypt cells fail to segregate Paneth and goblet cell fates. Mll1 deficiency causes Paneth cell-determined crypt progenitors to exhibit goblet cell features by unleashing Mapk signalling, resulting in increased numbers of mixed Paneth/goblet cells. We show that loss of Mll1 abolishes the pro-proliferative effect of Mapk signalling in intestinal progenitor cells and promotes Mapk-induced goblet cell differentiation. Our data uncover Mll1 and its downstream targets Gata4/6 as a regulatory hub of Wnt and Mapk signalling in the control of lineage specification of intestinal secretory Paneth and goblet cells.


Asunto(s)
Sistema de Señalización de MAP Quinasas/genética , Vía de Señalización Wnt/genética , Animales , Diferenciación Celular/genética , Epigénesis Genética/genética , Epigenómica/métodos , Femenino , Células Caliciformes/citología , Células Caliciformes/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Intestinos , Sistema de Señalización de MAP Quinasas/fisiología , Masculino , Ratones , Ratones Transgénicos , Organoides/metabolismo , Células de Paneth/citología , Células de Paneth/metabolismo , Células Madre/metabolismo , Vía de Señalización Wnt/fisiología
7.
PLoS Genet ; 17(12): e1009250, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34860830

RESUMEN

Epigenetic mechanisms are gatekeepers for the gene expression patterns that establish and maintain cellular identity in mammalian development, stem cells and adult homeostasis. Amongst many epigenetic marks, methylation of histone 3 lysine 4 (H3K4) is one of the most widely conserved and occupies a central position in gene expression. Mixed lineage leukemia 1 (MLL1/KMT2A) is the founding mammalian H3K4 methyltransferase. It was discovered as the causative mutation in early onset leukemia and subsequently found to be required for the establishment of definitive hematopoiesis and the maintenance of adult hematopoietic stem cells. Despite wide expression, the roles of MLL1 in non-hematopoietic tissues remain largely unexplored. To bypass hematopoietic lethality, we used bone marrow transplantation and conditional mutagenesis to discover that the most overt phenotype in adult Mll1-mutant mice is intestinal failure. MLL1 is expressed in intestinal stem cells (ISCs) and transit amplifying (TA) cells but not in the villus. Loss of MLL1 is accompanied by loss of ISCs and a differentiation bias towards the secretory lineage with increased numbers and enlargement of goblet cells. Expression profiling of sorted ISCs revealed that MLL1 is required to promote expression of several definitive intestinal transcription factors including Pitx1, Pitx2, Foxa1, Gata4, Zfp503 and Onecut2, as well as the H3K27me3 binder, Bahcc1. These results were recapitulated using conditional mutagenesis in intestinal organoids. The stem cell niche in the crypt includes ISCs in close association with Paneth cells. Loss of MLL1 from ISCs promoted transcriptional changes in Paneth cells involving metabolic and stress responses. Here we add ISCs to the MLL1 repertoire and observe that all known functions of MLL1 relate to the properties of somatic stem cells, thereby highlighting the suggestion that MLL1 is a master somatic stem cell regulator.


Asunto(s)
Células Madre Adultas/fisiología , Diferenciación Celular/genética , N-Metiltransferasa de Histona-Lisina/genética , Insuficiencia Intestinal/genética , Mucosa Intestinal/patología , Proteína de la Leucemia Mieloide-Linfoide/genética , Animales , Trasplante de Médula Ósea , Metilación de ADN , Modelos Animales de Enfermedad , Epigénesis Genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Insuficiencia Intestinal/patología , Mucosa Intestinal/citología , Yeyuno/citología , Yeyuno/patología , Ratones , Ratones Transgénicos , Mutagénesis , Mutación , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Nicho de Células Madre
8.
Development ; 148(21)2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34751748

RESUMEN

Although the role of the transcription factor NF-κB in intestinal inflammation and tumor formation has been investigated extensively, a physiological function of NF-κB in sustaining intestinal epithelial homeostasis beyond inflammation has not been demonstrated. Using NF-κB reporter mice, we detected strong NF-κB activity in Paneth cells, in '+4/+5' secretory progenitors and in scattered Lgr5+ crypt base columnar stem cells of small intestinal (SI) crypts. To examine NF-κB functions in SI epithelial self-renewal, mice or SI crypt organoids ('mini-guts') with ubiquitously suppressed NF-κB activity were used. We show that NF-κB activity is dispensable for maintaining SI epithelial proliferation, but is essential for ex vivo organoid growth. Furthermore, we demonstrate a dramatic reduction of Paneth cells in the absence of NF-κB activity, concomitant with a significant increase in goblet cells and immature intermediate cells. This indicates that NF-κB is required for proper Paneth versus goblet cell differentiation and for SI epithelial homeostasis, which occurs via regulation of Wnt signaling and Sox9 expression downstream of NF-κB. The current study thus presents evidence for an important role for NF-κB in intestinal epithelial self-renewal.


Asunto(s)
Células Caliciformes/citología , Intestino Delgado/citología , FN-kappa B/metabolismo , Células de Paneth/citología , Animales , Diferenciación Celular , Autorrenovación de las Células , Células Caliciformes/metabolismo , Homeostasis , Mucosa Intestinal/citología , Mucosa Intestinal/metabolismo , Intestino Delgado/metabolismo , Intestino Delgado/patología , Ratones , FN-kappa B/genética , Organoides/citología , Organoides/crecimiento & desarrollo , Organoides/metabolismo , Células de Paneth/metabolismo , Factor de Transcripción SOX9/metabolismo , Células Madre/citología , Células Madre/metabolismo , Proteínas Wnt/metabolismo , Vía de Señalización Wnt
9.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34039707

RESUMEN

Specified intestinal epithelial cells reprogram and contribute to the regeneration and renewal of the epithelium upon injury. Mutations that deregulate such renewal processes may contribute to tumorigenesis. Using intestinal organoids, we show that concomitant activation of Notch signaling and ablation of p53 induce a highly proliferative and regenerative cell state, which is associated with increased levels of Yap and the histone methyltransferase Mll1. The induced signaling system orchestrates high proliferation, self-renewal, and niche-factor-independent growth, and elevates the trimethylation of histone 3 at lysine 4 (H3K4me3). We demonstrate that Yap and Mll1 are also elevated in patient-derived colorectal cancer (CRC) organoids and control growth and viability. Our data suggest that Notch activation and p53 ablation induce a signaling circuitry involving Yap and the epigenetic regulator Mll1, which locks cells in a proliferative and regenerative state that renders them susceptible for tumorigenesis.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , N-Metiltransferasa de Histona-Lisina/fisiología , Proteína de la Leucemia Mieloide-Linfoide/fisiología , Receptores Notch/metabolismo , Transducción de Señal , Factores de Transcripción/fisiología , Proteína p53 Supresora de Tumor/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Humanos , Mutación , Organoides/metabolismo , Factores de Transcripción/metabolismo
10.
EMBO Mol Med ; 13(4): e13191, 2021 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-33544398

RESUMEN

SARS-CoV-2, the agent that causes COVID-19, invades epithelial cells, including those of the respiratory and gastrointestinal mucosa, using angiotensin-converting enzyme-2 (ACE2) as a receptor. Subsequent inflammation can promote rapid virus clearance, but severe cases of COVID-19 are characterized by an inefficient immune response that fails to clear the infection. Using primary epithelial organoids from human colon, we explored how the central antiviral mediator IFN-γ, which is elevated in COVID-19, affects epithelial cell differentiation, ACE2 expression, and susceptibility to infection with SARS-CoV-2. In mouse and human colon, ACE2 is mainly expressed by surface enterocytes. Inducing enterocyte differentiation in organoid culture resulted in increased ACE2 production. IFN-γ treatment promoted differentiation into mature KRT20+ enterocytes expressing high levels of ACE2, increased susceptibility to SARS-CoV-2 infection, and resulted in enhanced virus production in infected cells. Similarly, infection-induced epithelial interferon signaling promoted enterocyte maturation and enhanced ACE2 expression. We here reveal a mechanism by which IFN-γ-driven inflammatory responses induce a vulnerable epithelial state with robust replication of SARS-CoV-2, which may have an impact on disease outcome and virus transmission.


Asunto(s)
COVID-19/etiología , Interferón gamma/inmunología , Modelos Inmunológicos , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , COVID-19/inmunología , COVID-19/patología , Diferenciación Celular/inmunología , Colon/inmunología , Colon/patología , Colon/virología , Susceptibilidad a Enfermedades , Enterocitos/metabolismo , Enterocitos/patología , Enterocitos/virología , Expresión Génica , Interacciones Microbiota-Huesped/inmunología , Humanos , Interferón gamma/administración & dosificación , Mucosa Intestinal/inmunología , Mucosa Intestinal/patología , Mucosa Intestinal/virología , Ratones , Organoides/inmunología , Organoides/patología , Organoides/virología , SARS-CoV-2/genética , SARS-CoV-2/inmunología , SARS-CoV-2/patogenicidad , Replicación Viral/inmunología
11.
Nat Commun ; 12(1): 1003, 2021 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-33579932

RESUMEN

Genotoxic colibactin-producing pks+ Escherichia coli induce DNA double-strand breaks, mutations, and promote tumor development in mouse models of colorectal cancer (CRC). Colibactin's distinct mutational signature is reflected in human CRC, suggesting a causal link. Here, we investigate its transformation potential using organoids from primary murine colon epithelial cells. Organoids recovered from short-term infection with pks+ E. coli show characteristics of CRC cells, e.g., enhanced proliferation, Wnt-independence, and impaired differentiation. Sequence analysis of Wnt-independent organoids reveals an enhanced mutational burden, including chromosomal aberrations typical of genomic instability. Although we do not find classic Wnt-signaling mutations, we identify several mutations in genes related to p53-signaling, including miR-34a. Knockout of Trp53 or miR-34 in organoids results in Wnt-independence, corroborating a functional interplay between the p53 and Wnt pathways. We propose larger chromosomal alterations and aneuploidy as the basis of transformation in these organoids, consistent with the early appearance of chromosomal instability in CRC.


Asunto(s)
Células Epiteliales/metabolismo , Escherichia coli/metabolismo , Genómica , Péptidos/metabolismo , Policétidos/metabolismo , Animales , Aberraciones Cromosómicas , Colon/patología , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/psicología , Daño del ADN , Células Epiteliales/patología , Escherichia coli/genética , Masculino , Ratones , Ratones Noqueados , Mutación , Organoides , Péptidos/genética
12.
Nat Commun ; 11(1): 6422, 2020 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-33349639

RESUMEN

Wnt/ß-catenin signaling is crucial for intestinal carcinogenesis and the maintenance of intestinal cancer stem cells. Here we identify the histone methyltransferase Mll1 as a regulator of Wnt-driven intestinal cancer. Mll1 is highly expressed in Lgr5+ stem cells and human colon carcinomas with increased nuclear ß-catenin. High levels of MLL1 are associated with poor survival of colon cancer patients. The genetic ablation of Mll1 in mice prevents Wnt/ß-catenin-driven adenoma formation from Lgr5+ intestinal stem cells. Ablation of Mll1 decreases the self-renewal of human colon cancer spheres and halts tumor growth of xenografts. Mll1 controls the expression of stem cell genes including the Wnt/ß-catenin target gene Lgr5. Upon the loss of Mll1, histone methylation at the stem cell promoters switches from activating H3K4 tri-methylation to repressive H3K27 tri-methylation, indicating that Mll1 sustains stem cell gene expression by antagonizing gene silencing through polycomb repressive complex 2 (PRC2)-mediated H3K27 tri-methylation. Transcriptome profiling of Wnt-mutated intestinal tumor-initiating cells reveals that Mll1 regulates Gata4/6 transcription factors, known to sustain cancer stemness and to control goblet cell differentiation. Our results demonstrate that Mll1 is an essential epigenetic regulator of Wnt/ß-catenin-induced intestinal tumorigenesis and cancer stemness.


Asunto(s)
Carcinogénesis/genética , Epigénesis Genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Células Madre Neoplásicas/metabolismo , Vía de Señalización Wnt , Animales , Carcinogénesis/patología , Diferenciación Celular , Línea Celular Tumoral , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Histonas/metabolismo , Humanos , Intestinos/patología , Lisina/metabolismo , Metilación , Ratones Desnudos , Células Madre Neoplásicas/patología , Complejo Represivo Polycomb 2/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Regulación hacia Arriba/genética , Vía de Señalización Wnt/genética , beta Catenina/metabolismo
13.
Cell Rep ; 26(2): 415-428.e5, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30625324

RESUMEN

We identified a regulatory system that acts downstream of Wnt/ß-catenin signaling in salivary gland and head and neck carcinomas. We show in a mouse tumor model of K14-Cre-induced Wnt/ß-catenin gain-of-function and Bmpr1a loss-of-function mutations that tumor-propagating cells exhibit increased Mll1 activity and genome-wide increased H3K4 tri-methylation at promoters. Null mutations of Mll1 in tumor mice and in xenotransplanted human head and neck tumors resulted in loss of self-renewal of tumor-propagating cells and in block of tumor formation but did not alter normal tissue homeostasis. CRISPR/Cas9 mutagenesis and pharmacological interference of Mll1 at sequences that inhibit essential protein-protein interactions or the SET enzyme active site also blocked the self-renewal of mouse and human tumor-propagating cells. Our work provides strong genetic evidence for a crucial role of Mll1 in solid tumors. Moreover, inhibitors targeting specific Mll1 interactions might offer additional directions for therapies to treat these aggressive tumors.


Asunto(s)
Epigénesis Genética , Neoplasias de Cabeza y Cuello/genética , Código de Histonas , N-Metiltransferasa de Histona-Lisina/genética , Proteína de la Leucemia Mieloide-Linfoide/genética , Neoplasias de las Glándulas Salivales/genética , Vía de Señalización Wnt , Animales , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/genética , Dominio Catalítico , Células Cultivadas , Neoplasias de Cabeza y Cuello/metabolismo , N-Metiltransferasa de Histona-Lisina/química , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Mutación con Pérdida de Función , Ratones , Ratones Endogámicos C57BL , Proteína de la Leucemia Mieloide-Linfoide/química , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Unión Proteica , Neoplasias de las Glándulas Salivales/metabolismo , beta Catenina/metabolismo
14.
Life Sci Alliance ; 2(1): e201800173, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30599048

RESUMEN

We explored the connection between C/EBPα (CCAAT/enhancer-binding protein α) and Wnt signaling in gut homeostasis and carcinogenesis. C/EBPα was expressed in human and murine intestinal epithelia in the transit-amplifying region of the crypts and was absent in intestinal stem cells and Paneth cells with activated Wnt signaling. In human colorectal cancer and murine APCMin/+ polyps, C/EBPα was absent in the nuclear ß-catenin-positive tumor cells. In chemically induced intestinal carcinogenesis, C/EBPα KO in murine gut epithelia increased tumor volume. C/EBPα deletion extended the S-phase cell zone in intestinal organoids and activated typical proliferation gene expression signatures, including that of Wnt target genes. Genetic activation of ß-catenin in organoids attenuated C/EBPα expression, and ectopic C/EBPα expression in HCT116 cells abrogated proliferation. C/EBPα expression accompanied differentiation of the colon cancer cell line Caco-2, whereas ß-catenin stabilization suppressed C/EBPα. These data suggest homeostatic and oncogenic suppressor functions of C/EBPα in the gut by restricting Wnt signaling.


Asunto(s)
Proteína alfa Potenciadora de Unión a CCAAT/genética , Proteína alfa Potenciadora de Unión a CCAAT/metabolismo , Carcinogénesis/metabolismo , Homeostasis , Intestinos/fisiopatología , Vía de Señalización Wnt , Adenoma/metabolismo , Adenoma/patología , Animales , Células CACO-2 , Carcinogénesis/inducido químicamente , Diferenciación Celular/genética , Proliferación Celular/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Regulación Neoplásica de la Expresión Génica , Técnicas de Inactivación de Genes , Células HCT116 , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Organoides/metabolismo , Transfección , Carga Tumoral , beta Catenina/genética
15.
Cell Rep ; 16(12): 3388-3400, 2016 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-27653698

RESUMEN

Ubiquitylation regulates signaling pathways critical for cancer development and, in many cases, targets proteins for degradation. Here, we report that ubiquitylation by RNF4 stabilizes otherwise short-lived oncogenic transcription factors, including ß-catenin, Myc, c-Jun, and the Notch intracellular-domain (N-ICD) protein. RNF4 enhances the transcriptional activity of these factors, as well as Wnt- and Notch-dependent gene expression. While RNF4 is a SUMO-targeted ubiquitin ligase, protein stabilization requires the substrate's phosphorylation, rather than SUMOylation, and binding to RNF4's arginine-rich motif domain. Stabilization also involves generation of unusual polyubiquitin chains and docking of RNF4 to chromatin. Biologically, RNF4 enhances the tumor phenotype and is essential for cancer cell survival. High levels of RNF4 mRNA correlate with poor survival of a subgroup of breast cancer patients, and RNF4 protein levels are elevated in 30% of human colon adenocarcinomas. Thus, RNF4-dependent ubiquitylation translates transient phosphorylation signal(s) into long-term protein stabilization, resulting in enhanced oncoprotein activation.


Asunto(s)
Proteínas Nucleares/metabolismo , Oncogenes/fisiología , Estabilidad Proteica , Factores de Transcripción/metabolismo , Humanos , Ubiquitinación
16.
Proc Natl Acad Sci U S A ; 111(9): 3472-7, 2014 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-24550486

RESUMEN

In the development of the mammalian intestine, Notch and Wnt/ß-catenin signals control stem cell maintenance and their differentiation into absorptive and secretory cells. Mechanisms that regulate differentiation of progenitors into the three secretory lineages, goblet, paneth, or enteroendocrine cells, are not fully understood. Using conditional mutagenesis in mice, we observed that Shp2-mediated MAPK signaling determines the choice between paneth and goblet cell fates and also affects stem cells, which express the leucine-rich repeat-containing receptor 5 (Lgr5). Ablation of the tyrosine phosphatase Shp2 in the intestinal epithelium reduced MAPK signaling and led to a reduction of goblet cells while promoting paneth cell development. Conversely, conditional mitogen-activated protein kinase kinase 1 (Mek1) activation rescued the Shp2 phenotype, promoted goblet cell and inhibited paneth cell generation. The Shp2 mutation also expanded Lgr5+ stem cell niches, which could be restricted by activated Mek1 signaling. Changes of Lgr5+ stem cell quantities were accompanied by alterations of paneth cells, indicating that Shp2/MAPK signaling might affect stem cell niches directly or via paneth cells. Remarkably, inhibition of MAPK signaling in intestinal organoids and cultured cells changed the relative abundance of Tcf4 isoforms and by this, promoted Wnt/ß-catenin activity. The data thus show that Shp2-mediated MAPK signaling controls the choice between goblet and paneth cell fates by regulating Wnt/ß-catenin activity.


Asunto(s)
Diferenciación Celular/fisiología , Células Caliciformes/fisiología , Mucosa Intestinal/citología , Células de Paneth/fisiología , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Células Madre/citología , Vía de Señalización Wnt/fisiología , Animales , Western Blotting , Células Caliciformes/citología , Células HT29 , Humanos , Inmunoprecipitación , Ratones , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Técnicas de Cultivo de Órganos , Células de Paneth/citología , beta Catenina/metabolismo
17.
Dev Biol ; 360(2): 310-7, 2011 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-22015719

RESUMEN

The tyrosine phosphatase Shp2 acts downstream of various growth factors, hormones or cytokine receptors. Mutations of the Shp2 gene are associated with several human diseases. Here we have ablated Shp2 in the developing kidneys of mice, using the ureteric bud epithelium-specific Hoxb7/Cre. Mutant mice produced a phenotype that is similar to mutations of the genes of the GDNF/Ret receptor system, that is: strongly reduced ureteric bud branching and downregulation of the Ret target genes Etv4 and Etv5. Shp2 mutant embryonic kidneys also displayed reduced cell proliferation at the branch tips and branching defects, which could not be overcome by GDNF in organ culture. We also examined compound mutants of Shp2 and Sprouty1, which is an inhibitor of receptor tyrosine kinase signaling in the kidney. Sprouty1 single mutants produce supernumerary ureteric buds, which branch excessively. Sprouty1 mutants rescued branching deficits in Ret(-/-) and GDNF(-/-) kidneys. Sprouty1; Shp2 double mutants showed no rescue of kidney branching. Our data thus indicate an intricate interplay of Shp2 and Sprouty1 in signaling downstream of receptor tyrosine kinases during kidney development. Apparently, Shp2 mediates not only GDNF/Ret but also signaling by other receptor tyrosine kinases in branching morphogenesis of the embryonic kidney.


Asunto(s)
Proteínas de Unión al ADN/genética , Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Riñón/embriología , Proteínas Nucleares/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Proliferación Celular , Proteínas de Unión al ADN/metabolismo , Femenino , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Proteínas de Homeodominio/genética , Riñón/metabolismo , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Morfogénesis , Mutación , Proteínas Nucleares/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Transducción de Señal/genética , Ubiquitina-Proteína Ligasas
18.
Cold Spring Harb Perspect Biol ; 2(2): a002915, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20182623

RESUMEN

The epithelial-mesenchymal transition is essential in both embryonic development and the progression of carcinomas. Wnt signaling and cadherin-mediated adhesion have been implicated in both processes; clarifying their role will depend on linking them to rearrangements of cellular structure and behavior. beta-Catenin is an essential molecule both in cadherin-mediated cell adhesion and in canonical Wnt signaling. Numerous experiments have shown that the loss of cadherin-mediated cell adhesion can promote beta-catenin release and signaling; this is accomplished by proteases, protein kinases and other molecules. Cadherin loss can also signal to several other regulatory pathways. Additionally, many target genes of Wnt signaling influence cadherin adhesion. The most conspicuous of these Wnt target genes encode the transcription factors Twist and Slug, which directly inhibit the E-cadherin gene promoter. Other Wnt/beta-catenin target genes encode metalloproteases or the cell adhesion molecule L1, which favor the degradation of E-cadherin. These factors provide a mechanism whereby cadherin loss and increased Wnt signaling induce epithelial-mesenchymal transition in both carcinomas and development.


Asunto(s)
Cadherinas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas Wnt/metabolismo , Animales , Adhesión Celular , Epitelio/metabolismo , Regulación Enzimológica de la Expresión Génica , Humanos , Mesodermo/metabolismo , Modelos Biológicos , Regiones Promotoras Genéticas , beta Catenina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...