RESUMEN
BACKGROUND AND OBJECTIVES: TMEM106B has been proposed as a modifier of disease risk in FTLD-TDP, particularly in GRN pathogenic variant carriers. Furthermore, TMEM106B has been investigated as a disease modifier in the context of healthy aging and across multiple neurodegenerative diseases. The objective of this study was to evaluate and compare the effect of TMEM106B on gray matter volume and cognition in each of the common genetic FTD groups and in patients with sporadic FTD. METHODS: Participants were enrolled through the ARTFL/LEFFTDS Longitudinal Frontotemporal Lobar Degeneration (ALLFTD) study, which includes symptomatic and presymptomatic individuals with a pathogenic variant in C9orf72, GRN, MAPT, VCP, TBK1, TARDBP, symptomatic nonpathogenic variant carriers, and noncarrier family controls. All participants were genotyped for the TMEM106B rs1990622 SNP. Cross-sectionally, linear mixed-effects models were fitted to assess an association between TMEM106B and genetic group interaction with each outcome measure (gray matter volume and UDS3-EF for cognition), adjusting for education, age, sex, and CDR+NACC-FTLD sum of boxes. Subsequently, associations between TMEM106B and each outcome measure were investigated within the genetic group. For longitudinal modeling, linear mixed-effects models with time by TMEM106B predictor interactions were fitted. RESULTS: The minor allele of TMEM106B rs1990622, linked to a decreased risk of FTD, associated with greater gray matter volume in GRN pathogenic variant carriers under the recessive dosage model (N = 82, beta = 3.25, 95% CI [0.37-6.19], p = 0.034). This was most pronounced in the thalamus in the left hemisphere (beta = 0.03, 95% CI [0.01-0.06], p = 0.006), with a retained association when considering presymptomatic GRN pathogenic variant carriers only (N = 42, beta = 0.03, 95% CI [0.01-0.05], p = 0.003). The minor allele of TMEM106B rs1990622 also associated with greater cognitive scores among all C9orf72 pathogenic variant carriers (N = 229, beta = 0.36, 95% CI [0.05-0.066], p = 0.021) and in presymptomatic C9orf72 pathogenic variant carriers (N = 106, beta = 0.33, 95% CI [0.03-0.63], p = 0.036), under the recessive dosage model. DISCUSSION: We identified associations of TMEM106B with gray matter volume and cognition in the presence of GRN and C9orf72 pathogenic variants. The association of TMEM106B with outcomes of interest in presymptomatic GRN and C9orf72 pathogenic variant carriers could additionally reflect TMEM106B's effect on divergent pathophysiologic changes before the appearance of clinical symptoms.
Asunto(s)
Encéfalo , Degeneración Lobar Frontotemporal , Sustancia Gris , Proteínas de la Membrana , Proteínas del Tejido Nervioso , Polimorfismo de Nucleótido Simple , Humanos , Femenino , Masculino , Proteínas de la Membrana/genética , Persona de Mediana Edad , Degeneración Lobar Frontotemporal/genética , Degeneración Lobar Frontotemporal/diagnóstico por imagen , Degeneración Lobar Frontotemporal/patología , Anciano , Proteínas del Tejido Nervioso/genética , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Cognición/fisiología , Tamaño de los Órganos , Estudios Transversales , Estudios Longitudinales , Imagen por Resonancia MagnéticaRESUMEN
INTRODUCTION: Cardiovascular health is important for brain aging, yet its role in the clinical manifestation of autosomal dominant or atypical forms of dementia has not been fully elucidated. We examined relationships between Life's Simple 7 (LS7) and clinical trajectories in individuals with autosomal dominant frontotemporal lobar degeneration (FTLD). METHODS: Two hundred forty-seven adults carrying FTLD pathogenic genetic variants (53% asymptomatic) and 189 non-carrier controls completed baseline LS7, and longitudinal neuroimaging and neuropsychological testing. RESULTS: Among variant carriers, higher baseline LS7 is associated with slower accumulation of frontal white matter hyperintensities (WMHs), as well as slower memory and language declines. Higher baseline LS7 associated with larger baseline frontotemporal volume, but not frontotemporal volume trajectories. DISCUSSION: Better baseline cardiovascular health related to slower cognitive decline and accumulation of frontal WMHs in autosomal dominant FTLD. Optimizing cardiovascular health may be an important modifiable approach to bolster cognitive health and brain integrity in FTLD. HIGHLIGHTS: Better cardiovascular health associates with slower cognitive decline in frontotemporal lobar degeneration (FTLD). Lifestyle relates to the accumulation of frontal white matter hyperintensities in FTLD. More optimal cardiovascular health associates with greater baseline frontotemporal lobe volume. Optimized cardiovascular health relates to more favorable outcomes in genetic dementia.
Asunto(s)
Progresión de la Enfermedad , Degeneración Lobar Frontotemporal , Pruebas Neuropsicológicas , Humanos , Masculino , Femenino , Degeneración Lobar Frontotemporal/genética , Degeneración Lobar Frontotemporal/patología , Persona de Mediana Edad , Pruebas Neuropsicológicas/estadística & datos numéricos , Imagen por Resonancia Magnética , Sustancia Blanca/patología , Sustancia Blanca/diagnóstico por imagen , Heterocigoto , Anciano , Disfunción Cognitiva/genética , Disfunción Cognitiva/patología , Encéfalo/patología , Encéfalo/diagnóstico por imagen , NeuroimagenRESUMEN
BACKGROUND AND OBJECTIVES: Identification of fluid biomarkers for progressive supranuclear palsy (PSP) is critical to enhance therapeutic development. We implemented unbiased DNA aptamer (SOMAmer) proteomics to identify novel CSF PSP biomarkers. METHODS: This is a cross-sectional study in original (18 clinically diagnosed PSP-Richardson syndrome [PSP-RS], 28 cognitively healthy controls]), validation (23 PSP-RS, 26 healthy controls), and neuropathology-confirmed (21 PSP, 52 non-PSP frontotemporal lobar degeneration) cohorts. Participants were recruited through the University of California, San Francisco, and the 4-Repeat Neuroimaging Initiative. The original and neuropathology cohorts were analyzed with the SomaScan platform version 3.0 (5026-plex) and the validation cohort with version 4.1 (7595-plex). Clinical severity was measured with the PSP Rating Scale (PSPRS). CSF proteomic data were analyzed to identify differentially expressed targets, implicated biological pathways using enrichment and weighted consensus gene coexpression analyses, diagnostic value of top targets with receiver-operating characteristic curves, and associations with disease severity with linear regressions. RESULTS: A total of 136 participants were included (median age 70.6 ± 8 years, 68 [50%] women). One hundred fifty-five of 5,026 (3.1%), 959 of 7,595 (12.6%), and 321 of 5,026 (6.3%) SOMAmers were differentially expressed in PSP compared with controls in original, validation, and neuropathology-confirmed cohorts, with most of the SOMAmers showing reduced signal (83.1%, 95.1%, and 73.2%, respectively). Three coexpression modules were associated with PSP across cohorts: (1) synaptic function/JAK-STAT (ß = -0.044, corrected p = 0.002), (2) vesicle cytoskeletal trafficking (ß = 0.039, p = 0.007), and (3) cytokine-cytokine receptor interaction (ß = -0.032, p = 0.035) pathways. Axon guidance was the top dysregulated pathway in PSP in original (strength = 1.71, p < 0.001), validation (strength = 0.84, p < 0.001), and neuropathology-confirmed (strength = 0.78, p < 0.001) cohorts. A panel of axon guidance pathway proteins discriminated between PSP and controls in original (area under the curve [AUC] = 0.924), validation (AUC = 0.815), and neuropathology-confirmed (AUC = 0.932) cohorts. Two inflammatory proteins, galectin-10 and cytotoxic T lymphocyte-associated protein-4, correlated with PSPRS scores across cohorts. DISCUSSION: Axon guidance pathway proteins and several other molecular pathways are downregulated in PSP, compared with controls. Proteins in these pathways may be useful targets for biomarker or therapeutic development.
Asunto(s)
Biomarcadores , Proteómica , Parálisis Supranuclear Progresiva , Humanos , Parálisis Supranuclear Progresiva/líquido cefalorraquídeo , Parálisis Supranuclear Progresiva/diagnóstico , Femenino , Masculino , Anciano , Proteómica/métodos , Biomarcadores/líquido cefalorraquídeo , Estudios Transversales , Persona de Mediana Edad , Estudios de Cohortes , Anciano de 80 o más AñosRESUMEN
BACKGROUND: Frontotemporal lobar degeneration (FTLD) is a leading cause of dementia in individuals aged <65 years. Several challenges to conducting in-person evaluations in FTLD illustrate an urgent need to develop remote, accessible, and low-burden assessment techniques. Studies of unobtrusive monitoring of at-home computer use in older adults with mild cognitive impairment show that declining function is reflected in reduced computer use; however, associations with smartphone use are unknown. OBJECTIVE: This study aims to characterize daily trajectories in smartphone battery use, a proxy for smartphone use, and examine relationships with clinical indicators of severity in FTLD. METHODS: Participants were 231 adults (mean age 52.5, SD 14.9 years; n=94, 40.7% men; n=223, 96.5% non-Hispanic White) enrolled in the Advancing Research and Treatment of Frontotemporal Lobar Degeneration (ARTFL study) and Longitudinal Evaluation of Familial Frontotemporal Dementia Subjects (LEFFTDS study) Longitudinal Frontotemporal Lobar Degeneration (ALLFTD) Mobile App study, including 49 (21.2%) with mild neurobehavioral changes and no functional impairment (ie, prodromal FTLD), 43 (18.6%) with neurobehavioral changes and functional impairment (ie, symptomatic FTLD), and 139 (60.2%) clinically normal adults, of whom 55 (39.6%) harbored heterozygous pathogenic or likely pathogenic variants in an autosomal dominant FTLD gene. Participants completed the Clinical Dementia Rating plus National Alzheimer's Coordinating Center Frontotemporal Lobar Degeneration Behavior and Language Domains (CDR+NACC FTLD) scale, a neuropsychological battery; the Neuropsychiatric Inventory; and brain magnetic resonance imaging. The ALLFTD Mobile App was installed on participants' smartphones for remote, passive, and continuous monitoring of smartphone use. Battery percentage was collected every 15 minutes over an average of 28 (SD 4.2; range 14-30) days. To determine whether temporal patterns of battery percentage varied as a function of disease severity, linear mixed effects models examined linear, quadratic, and cubic effects of the time of day and their interactions with each measure of disease severity on battery percentage. Models covaried for age, sex, smartphone type, and estimated smartphone age. RESULTS: The CDR+NACC FTLD global score interacted with time on battery percentage such that participants with prodromal or symptomatic FTLD demonstrated less change in battery percentage throughout the day (a proxy for less smartphone use) than clinically normal participants (P<.001 in both cases). Additional models showed that worse performance in all cognitive domains assessed (ie, executive functioning, memory, language, and visuospatial skills), more neuropsychiatric symptoms, and smaller brain volumes also associated with less battery use throughout the day (P<.001 in all cases). CONCLUSIONS: These findings support a proof of concept that passively collected data about smartphone use behaviors associate with clinical impairment in FTLD. This work underscores the need for future studies to develop and validate passive digital markers sensitive to longitudinal clinical decline across neurodegenerative diseases, with potential to enhance real-world monitoring of neurobehavioral change.
Asunto(s)
Demencia Frontotemporal , Teléfono Inteligente , Humanos , Femenino , Masculino , Persona de Mediana Edad , Demencia Frontotemporal/diagnóstico , Demencia Frontotemporal/fisiopatología , Anciano , Índice de Severidad de la Enfermedad , Prueba de Estudio Conceptual , Adulto , Estudios Longitudinales , Pruebas Neuropsicológicas , Aplicaciones MóvilesRESUMEN
Importance: Frontotemporal lobar degeneration (FTLD) is relatively rare, behavioral and motor symptoms increase travel burden, and standard neuropsychological tests are not sensitive to early-stage disease. Remote smartphone-based cognitive assessments could mitigate these barriers to trial recruitment and success, but no such tools are validated for FTLD. Objective: To evaluate the reliability and validity of smartphone-based cognitive measures for remote FTLD evaluations. Design, Setting, and Participants: In this cohort study conducted from January 10, 2019, to July 31, 2023, controls and participants with FTLD performed smartphone application (app)-based executive functioning tasks and an associative memory task 3 times over 2 weeks. Observational research participants were enrolled through 18 centers of a North American FTLD research consortium (ALLFTD) and were asked to complete the tests remotely using their own smartphones. Of 1163 eligible individuals (enrolled in parent studies), 360 were enrolled in the present study; 364 refused and 439 were excluded. Participants were divided into discovery (n = 258) and validation (n = 102) cohorts. Among 329 participants with data available on disease stage, 195 were asymptomatic or had preclinical FTLD (59.3%), 66 had prodromal FTLD (20.1%), and 68 had symptomatic FTLD (20.7%) with a range of clinical syndromes. Exposure: Participants completed standard in-clinic measures and remotely administered ALLFTD mobile app (app) smartphone tests. Main Outcomes and Measures: Internal consistency, test-retest reliability, association of smartphone tests with criterion standard clinical measures, and diagnostic accuracy. Results: In the 360 participants (mean [SD] age, 54.0 [15.4] years; 209 [58.1%] women), smartphone tests showed moderate-to-excellent reliability (intraclass correlation coefficients, 0.77-0.95). Validity was supported by association of smartphones tests with disease severity (r range, 0.38-0.59), criterion-standard neuropsychological tests (r range, 0.40-0.66), and brain volume (standardized ß range, 0.34-0.50). Smartphone tests accurately differentiated individuals with dementia from controls (area under the curve [AUC], 0.93 [95% CI, 0.90-0.96]) and were more sensitive to early symptoms (AUC, 0.82 [95% CI, 0.76-0.88]) than the Montreal Cognitive Assessment (AUC, 0.68 [95% CI, 0.59-0.78]) (z of comparison, -2.49 [95% CI, -0.19 to -0.02]; P = .01). Reliability and validity findings were highly similar in the discovery and validation cohorts. Preclinical participants who carried pathogenic variants performed significantly worse than noncarrier family controls on 3 app tasks (eg, 2-back ß = -0.49 [95% CI, -0.72 to -0.25]; P < .001) but not a composite of traditional neuropsychological measures (ß = -0.14 [95% CI, -0.42 to 0.14]; P = .32). Conclusions and Relevance: The findings of this cohort study suggest that smartphones could offer a feasible, reliable, valid, and scalable solution for remote evaluations of FTLD and may improve early detection. Smartphone assessments should be considered as a complementary approach to traditional in-person trial designs. Future research should validate these results in diverse populations and evaluate the utility of these tests for longitudinal monitoring.
Asunto(s)
Demencia Frontotemporal , Degeneración Lobar Frontotemporal , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios de Cohortes , Demencia Frontotemporal/diagnóstico , Degeneración Lobar Frontotemporal/diagnóstico , Degeneración Lobar Frontotemporal/patología , Degeneración Lobar Frontotemporal/psicología , Pruebas Neuropsicológicas , Reproducibilidad de los Resultados , Teléfono Inteligente , Ensayos Clínicos como AsuntoRESUMEN
Background and Objectives: TMEM106B has been proposed as a modifier of disease risk in FTLD-TDP, particularly in GRN mutation carriers. Furthermore, TMEM106B has been investigated as a disease modifier in the context of healthy aging and across multiple neurodegenerative diseases. The objective of this study is to evaluate and compare the effect of TMEM106B on gray matter volume and cognition in each of the common genetic FTD groups and in sporadic FTD patients. Methods: Participants were enrolled through the ARTFL/LEFFTDS Longitudinal Frontotemporal Lobar Degeneration (ALLFTD) study, which includes symptomatic and presymptomatic individuals with a pathogenic mutation in C9orf72, GRN, MAPT, VCP, TBK1, TARDBP, symptomatic non-mutation carriers, and non-carrier family controls. All participants were genotyped for the TMEM106B rs1990622 SNP. Cross-sectionally, linear mixed-effects models were fitted to assess an association between TMEM106B and genetic group interaction with each outcome measure (gray matter volume and UDS3-EF for cognition), adjusting for education, age, sex and CDR®+NACC-FTLD sum of boxes. Subsequently, associations between TMEM106B and each outcome measure were investigated within the genetic group. For longitudinal modeling, linear mixed-effects models with time by TMEM106B predictor interactions were fitted. Results: The minor allele of TMEM106B rs1990622, linked to a decreased risk of FTD, associated with greater gray matter volume in GRN mutation carriers under the recessive dosage model. This was most pronounced in the thalamus in the left hemisphere, with a retained association when considering presymptomatic GRN mutation carriers only. The minor allele of TMEM106B rs1990622 also associated with greater cognitive scores among all C9orf72 mutation carriers and in presymptomatic C9orf72 mutation carriers, under the recessive dosage model. Discussion: We identified associations of TMEM106B with gray matter volume and cognition in the presence of GRN and C9orf72 mutations. This further supports TMEM106B as modifier of TDP-43 pathology. The association of TMEM106B with outcomes of interest in presymptomatic GRN and C9orf72 mutation carriers could additionally reflect TMEM106B's impact on divergent pathophysiological changes before the appearance of clinical symptoms.
RESUMEN
Background: Frontotemporal dementia (FTD) is the most common cause of early-onset dementia with 10-20% of cases caused by mutations in one of three genes: GRN, C9orf72, or MAPT. To effectively develop therapeutics for FTD, the identification and characterization of biomarkers to understand disease pathogenesis and evaluate the impact of specific therapeutic strategies on the target biology as well as the underlying disease pathology are essential. Moreover, tracking the longitudinal changes of these biomarkers throughout disease progression is crucial to discern their correlation with clinical manifestations for potential prognostic usage. Methods: We conducted a comprehensive investigation of biomarkers indicative of lysosomal biology, glial cell activation, synaptic and neuronal health in cerebrospinal fluid (CSF) and plasma from non-carrier controls, sporadic FTD (symptomatic non-carriers) and symptomatic carriers of mutations in GRN, C9orf72, or MAPT, as well as asymptomatic GRN mutation carriers. We also assessed the longitudinal changes of biomarkers in GRN mutation carriers. Furthermore, we examined biomarker levels in disease impacted brain regions including middle temporal gyrus (MTG) and superior frontal gyrus (SFG) and disease-unaffected inferior occipital gyrus (IOG) from sporadic FTD and symptomatic GRN carriers. Results: We confirmed glucosylsphingosine (GlcSph), a lysosomal biomarker regulated by progranulin, was elevated in the plasma from GRN mutation carriers, both symptomatic and asymptomatic. GlcSph and other lysosomal biomarkers such as ganglioside GM2 and globoside GB3 were increased in the disease affected SFG and MTG regions from sporadic FTD and symptomatic GRN mutation carriers, but not in the IOG, compared to the same brain regions from controls. The glial biomarkers GFAP in plasma and YKL40 in CSF were elevated in asymptomatic GRN carriers, and all symptomatic groups, except the symptomatic C9orf72 mutation group. YKL40 was also increased in SFG and MTG regions from sporadic FTD and symptomatic GRN mutation carriers. Neuronal injury and degeneration biomarkers NfL in CSF and plasma, and UCHL1 in CSF were elevated in patients with all forms of FTD. Synaptic biomarkers NPTXR, NPTX1/2, and VGF were reduced in CSF from patients with all forms of FTD, with the most pronounced reductions observed in symptomatic MAPT mutation carriers. Furthermore, we demonstrated plasma NfL was significantly positively correlated with disease severity as measured by CDR+NACC FTLD SB in genetic forms of FTD and CSF NPTXR was significantly negatively correlated with CDR+NACC FTLD SB in symptomatic GRN and MAPT mutation carriers. Conclusions: In conclusion, our comprehensive investigation replicated alterations in biofluid biomarkers indicative of lysosomal function, glial activation, synaptic and neuronal health across sporadic and genetic forms of FTD and unveiled novel insights into the dysregulation of these biomarkers within brain tissues from patients with GRN mutations. The observed correlations between biomarkers and disease severity open promising avenues for prognostic applications and for indicators of drug efficacy in clinical trials. Our data also implicated a complicated relationship between biofluid and tissue biomarker changes and future investigations should delve into the mechanistic underpinnings of these biomarkers, which will serve as a foundation for the development of targeted therapeutics for FTD.
RESUMEN
We assessed white matter (WM) integrity in MAPT mutation carriers (16 asymptomatic, 5 symptomatic) compared to 31 non-carrier family controls using diffusion tensor imaging (DTI) (fractional anisotropy; FA, mean diffusivity; MD) and neurite orientation dispersion and density imaging (NODDI) (neurite density index; NDI, orientation and dispersion index; ODI). Linear mixed-effects models accounting for age and family relatedness revealed alterations across DTI and NODDI metrics in all mutation carriers and in symptomatic carriers, with the most significant differences involving fronto-temporal WM tracts. Asymptomatic carriers showed higher entorhinal MD and lower cingulum FA and patterns of higher ODI mostly involving temporal areas and long association and projections fibers. Regression models between estimated time to or time from disease and DTI and NODDI metrics in key regions (amygdala, cingulum, entorhinal, inferior temporal, uncinate fasciculus) in all carriers showed increasing abnormalities with estimated time to or time from disease onset, with FA and NDI showing the strongest relationships. Neurite-based metrics, particularly ODI, appear to be particularly sensitive to early WM involvement in asymptomatic carriers.
Asunto(s)
Heterocigoto , Neuritas , Sustancia Blanca , Proteínas tau , Encéfalo/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética/métodos , Imagen de Difusión Tensora/métodos , Mutación , Sustancia Blanca/diagnóstico por imagen , Humanos , Proteínas tau/genéticaRESUMEN
Tau PET has enabled the visualization of paired helical filaments of 3 or 4 C-terminal repeat tau in Alzheimer disease (AD), but its ability to detect aggregated tau in frontotemporal lobar degeneration (FTLD) spectrum disorders is uncertain. We investigated 2-(2-([18F]fluoro)pyridin-4-yl)-9H-pyrrolo[2,3-b:4,5c']dipyridine ([18F]PI-2620), a newer tracer with ex vivo evidence for binding to FTLD tau, in a convenience sample of patients with suspected FTLD and AD using a static acquisition protocol and parametric SUV ratio (SUVr) images. Methods: We analyzed [18F]PI-2620 PET data from 65 patients with clinical diagnoses associated with AD or FTLD neuropathology; most (60/65) also had amyloid-ß (Aß) PET. Scans were acquired 30-60 min after injection; SUVr maps (reference, inferior cerebellar cortex) were created for the full acquisition and for 10-min truncated sliding windows (30-40, 35-45, 50-60 min). Age- and sex-adjusted z score maps were computed for each patient, relative to 23 Aß-negative cognitively healthy controls (HC). Mean SUVr in the globus pallidus, substantia nigra, subthalamic nuclei, dentate nuclei, white matter, and temporal gray matter was extracted for the full and truncated windows. Results: Patients with suspected AD neuropathology (Aß-positive patients with mild cognitive impairment or AD dementia) showed high-intensity temporoparietal cortex-predominant [18F]PI-2620 binding. At the group level, patients with clinical diagnoses associated with FTLD (progressive supranuclear palsy with Richardson syndrome [PSP Richardson syndrome], corticobasal syndrome, and nonfluent-variant primary progressive aphasia) exhibited higher globus pallidus SUVr than did HCs; pallidal retention was highest in the PSP Richardson syndrome group, in whom SUVr was correlated with symptom severity (ρ = 0.53, P = 0.05). At the individual level, only half of PSP Richardson syndrome, corticobasal syndrome, and nonfluent-variant primary progressive aphasia patients had a pallidal SUVr above that of HCs. Temporal SUVr discriminated AD patients from HCs with high accuracy (area under the receiver operating characteristic curve, 0.94 [95% CI, 0.83-1.00]) for all time windows, whereas discrimination between patients with PSP Richardson syndrome and HCs using pallidal SUVr was fair regardless of time window (area under the receiver operating characteristic curve, 0.77 [95% CI, 0.61-0.92] at 30-40 min vs. 0.81 [95% CI, 0.66-0.96] at 50-60 min; P = 0.67). Conclusion: [18F]PI-2620 SUVr shows an intense and consistent signal in AD but lower-intensity, heterogeneous, and rapidly decreasing binding in patients with suspected FTLD. Further work is needed to delineate the substrate of [18F]PI-2620 binding and the usefulness of [18F]PI2620 SUVr quantification outside the AD continuum.
Asunto(s)
Enfermedad de Alzheimer , Afasia Progresiva Primaria , Degeneración Corticobasal , Demencia Frontotemporal , Degeneración Lobar Frontotemporal , Parálisis Supranuclear Progresiva , Humanos , Enfermedad de Alzheimer/metabolismo , Tomografía de Emisión de Positrones/métodos , Degeneración Lobar Frontotemporal/patología , Péptidos beta-Amiloides/metabolismo , Proteínas tau/metabolismoRESUMEN
OBJECTIVE: Microtubule-associated protein tau (MAPT) mutations cause frontotemporal lobar degeneration, and novel biomarkers are urgently needed for early disease detection. We used task-free functional magnetic resonance imaging (fMRI) mapping, a promising biomarker, to analyze network connectivity in symptomatic and presymptomatic MAPT mutation carriers. METHODS: We compared cross-sectional fMRI data between 17 symptomatic and 39 presymptomatic carriers and 81 controls with (1) seed-based analyses to examine connectivity within networks associated with the 4 most common MAPT-associated clinical syndromes (ie, salience, corticobasal syndrome, progressive supranuclear palsy syndrome, and default mode networks) and (2) whole-brain connectivity analyses. We applied K-means clustering to explore connectivity heterogeneity in presymptomatic carriers at baseline. Neuropsychological measures, plasma neurofilament light chain, and gray matter volume were compared at baseline and longitudinally between the presymptomatic subgroups defined by their baseline whole-brain connectivity profiles. RESULTS: Symptomatic and presymptomatic carriers had connectivity disruptions within MAPT-syndromic networks. Compared to controls, presymptomatic carriers showed regions of connectivity alterations with age. Two presymptomatic subgroups were identified by clustering analysis, exhibiting predominantly either whole-brain hypoconnectivity or hyperconnectivity at baseline. At baseline, these two presymptomatic subgroups did not differ in neuropsychological measures, although the hypoconnectivity subgroup had greater plasma neurofilament light chain levels than controls. Longitudinally, both subgroups showed visual memory decline (vs controls), yet the subgroup with baseline hypoconnectivity also had worsening verbal memory and neuropsychiatric symptoms, and extensive bilateral mesial temporal gray matter decline. INTERPRETATION: Network connectivity alterations arise as early as the presymptomatic phase. Future studies will determine whether presymptomatic carriers' baseline connectivity profiles predict symptomatic conversion. ANN NEUROL 2023;94:632-646.
Asunto(s)
Demencia Frontotemporal , Proteínas tau , Humanos , Estudios Transversales , Proteínas tau/genética , Encéfalo/diagnóstico por imagen , Mutación/genética , Sustancia Gris/diagnóstico por imagen , Imagen por Resonancia Magnética , Demencia Frontotemporal/genética , BiomarcadoresRESUMEN
Introduction: Remote smartphone assessments of cognition, speech/language, and motor functioning in frontotemporal dementia (FTD) could enable decentralized clinical trials and improve access to research. We studied the feasibility and acceptability of remote smartphone data collection in FTD research using the ALLFTD Mobile App (ALLFTD-mApp). Methods: A diagnostically mixed sample of 214 participants with FTD or from familial FTD kindreds (asymptomatic: CDR®+NACC-FTLD = 0 [N = 101]; prodromal: 0.5 [N = 49]; symptomatic ≥1 [N = 51]; not measured [N = 13]) were asked to complete ALLFTD-mApp tests on their smartphone three times within 12 days. They completed smartphone familiarity and participation experience surveys. Results: It was feasible for participants to complete the ALLFTD-mApp on their own smartphones. Participants reported high smartphone familiarity, completed â¼ 70% of tasks, and considered the time commitment acceptable (98% of respondents). Greater disease severity was associated with poorer performance across several tests. Discussion: These findings suggest that the ALLFTD-mApp study protocol is feasible and acceptable for remote FTD research. HIGHLIGHTS: The ALLFTD Mobile App is a smartphone-based platform for remote, self-administered data collection.The ALLFTD Mobile App consists of a comprehensive battery of surveys and tests of executive functioning, memory, speech and language, and motor abilities.Remote digital data collection using the ALLFTD Mobile App was feasible in a multicenter research consortium that studies FTD. Data was collected in healthy controls and participants with a range of diagnoses, particularly FTD spectrum disorders.Remote digital data collection was well accepted by participants with a variety of diagnoses.
RESUMEN
Importance: Plasma phosphorylated tau217 (p-tau217), a biomarker of Alzheimer disease (AD), is of special interest in corticobasal syndrome (CBS) because autopsy studies have revealed AD is the driving neuropathology in up to 40% of cases. This differentiates CBS from other 4-repeat tauopathy (4RT)-associated syndromes, such as progressive supranuclear palsy Richardson syndrome (PSP-RS) and nonfluent primary progressive aphasia (nfvPPA), where underlying frontotemporal lobar degeneration (FTLD) is typically the primary neuropathology. Objective: To validate plasma p-tau217 against positron emission tomography (PET) in 4RT-associated syndromes, especially CBS. Design, Setting, and Participants: This multicohort study with 6, 12, and 24-month follow-up recruited adult participants between January 2011 and September 2020 from 8 tertiary care centers in the 4RT Neuroimaging Initiative (4RTNI). All participants with CBS (n = 113), PSP-RS (n = 121), and nfvPPA (n = 39) were included; other diagnoses were excluded due to rarity (n = 29). Individuals with PET-confirmed AD (n = 54) and PET-negative cognitively normal control individuals (n = 59) were evaluated at University of California San Francisco. Operators were blinded to the cohort. Main Outcome and Measures: Plasma p-tau217, measured by Meso Scale Discovery electrochemiluminescence, was validated against amyloid-ß (Aß) and flortaucipir (FTP) PET. Imaging analyses used voxel-based morphometry and bayesian linear mixed-effects modeling. Clinical biomarker associations were evaluated using longitudinal mixed-effect modeling. Results: Of 386 participants, 199 (52%) were female, and the mean (SD) age was 68 (8) years. Plasma p-tau217 was elevated in patients with CBS with positive Aß PET results (mean [SD], 0.57 [0.43] pg/mL) or FTP PET (mean [SD], 0.75 [0.30] pg/mL) to concentrations comparable to control individuals with AD (mean [SD], 0.72 [0.37]), whereas PSP-RS and nfvPPA showed no increase relative to control. Within CBS, p-tau217 had excellent diagnostic performance with area under the receiver operating characteristic curve (AUC) for Aß PET of 0.87 (95% CI, 0.76-0.98; P < .001) and FTP PET of 0.93 (95% CI, 0.83-1.00; P < .001). At baseline, individuals with CBS-AD (n = 12), defined by a PET-validated plasma p-tau217 cutoff 0.25 pg/mL or greater, had increased temporoparietal atrophy at baseline compared to individuals with CBS-FTLD (n = 39), whereas longitudinally, individuals with CBS-FTLD had faster brainstem atrophy rates. Individuals with CBS-FTLD also progressed more rapidly on a modified version of the PSP Rating Scale than those with CBS-AD (mean [SD], 3.5 [0.5] vs 0.8 [0.8] points/year; P = .005). Conclusions and Relevance: In this cohort study, plasma p-tau217 had excellent diagnostic performance for identifying Aß or FTP PET positivity within CBS with likely underlying AD pathology. Plasma P-tau217 may be a useful and inexpensive biomarker to select patients for CBS clinical trials.
Asunto(s)
Enfermedad de Alzheimer , Degeneración Corticobasal , Demencia Frontotemporal , Degeneración Lobar Frontotemporal , Parálisis Supranuclear Progresiva , Adulto , Humanos , Femenino , Anciano , Masculino , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/complicaciones , Estudios de Cohortes , Teorema de Bayes , Péptidos beta-Amiloides , Degeneración Lobar Frontotemporal/patología , Tomografía de Emisión de Positrones , Biomarcadores , Atrofia , Proteínas tauRESUMEN
INTRODUCTION: Empathy relies on fronto-cingular and temporal networks that are selectively vulnerable in behavioral variant frontotemporal dementia (bvFTD). This study modeled when in the disease process empathy changes begin, and how they progress. METHODS: Four hundred thirty-one individuals with asymptomatic genetic FTD (n = 114), genetic and sporadic bvFTD (n = 317), and 163 asymptomatic non-carrier controls were enrolled. In sub-samples, we investigated empathy measured by the informant-based Interpersonal Reactivity Index (IRI) at each disease stage and over time (n = 91), and its correspondence to underlying atrophy (n = 51). RESULTS: Empathic concern (estimate = 4.38, 95% confidence interval [CI] = 2.79, 5.97; p < 0.001) and perspective taking (estimate = 5.64, 95% CI = 3.81, 7.48; p < 0.001) scores declined between the asymptomatic and very mild symptomatic stages regardless of pathogenic variant status. More rapid loss of empathy corresponded with subcortical atrophy. DISCUSSION: Loss of empathy is an early and progressive symptom of bvFTD that is measurable by IRI informant ratings and can be used to monitor behavior in neuropsychiatry practice and treatment trials.
Asunto(s)
Empatía , Demencia Frontotemporal , Humanos , Demencia Frontotemporal/diagnóstico , Pruebas Neuropsicológicas , Atrofia , Imagen por Resonancia MagnéticaRESUMEN
Despite recent advances in fluid biomarker research in Alzheimer's disease (AD), there are no fluid biomarkers or imaging tracers with utility for diagnosis and/or theragnosis available for other tauopathies. Using immunoprecipitation and mass spectrometry, we show that 4 repeat (4R) isoform-specific tau species from microtubule-binding region (MTBR-tau275 and MTBR-tau282) increase in the brains of corticobasal degeneration (CBD), progressive supranuclear palsy (PSP), frontotemporal lobar degeneration (FTLD)-MAPT and AD but decrease inversely in the cerebrospinal fluid (CSF) of CBD, FTLD-MAPT and AD compared to control and other FTLD-tau (for example, Pick's disease). CSF MTBR-tau measures are reproducible in repeated lumbar punctures and can be used to distinguish CBD from control (receiver operating characteristic area under the curve (AUC) = 0.889) and other FTLD-tau, such as PSP (AUC = 0.886). CSF MTBR-tau275 and MTBR-tau282 may represent the first affirmative biomarkers to aid in the diagnosis of primary tauopathies and facilitate clinical trial designs.
Asunto(s)
Enfermedad de Alzheimer , Demencia Frontotemporal , Degeneración Lobar Frontotemporal , Tauopatías , Humanos , Tauopatías/patología , Proteínas tau , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/patología , Degeneración Lobar Frontotemporal/patología , Demencia Frontotemporal/patología , Biomarcadores , MicrotúbulosRESUMEN
Unlike familial Alzheimer's disease, we have been unable to accurately predict symptom onset in presymptomatic familial frontotemporal dementia (f-FTD) mutation carriers, which is a major hurdle to designing disease prevention trials. We developed multimodal models for f-FTD disease progression and estimated clinical trial sample sizes in C9orf72, GRN and MAPT mutation carriers. Models included longitudinal clinical and neuropsychological scores, regional brain volumes and plasma neurofilament light chain (NfL) in 796 carriers and 412 noncarrier controls. We found that the temporal ordering of clinical and biomarker progression differed by genotype. In prevention-trial simulations using model-based patient selection, atrophy and NfL were the best endpoints, whereas clinical measures were potential endpoints in early symptomatic trials. f-FTD prevention trials are feasible but will likely require global recruitment efforts. These disease progression models will facilitate the planning of f-FTD clinical trials, including the selection of optimal endpoints and enrollment criteria to maximize power to detect treatment effects.
Asunto(s)
Demencia Frontotemporal , Biomarcadores , Proteína C9orf72/genética , Ensayos Clínicos como Asunto , Progresión de la Enfermedad , Demencia Frontotemporal/genética , Humanos , Mutación/genética , Proteínas tau/genéticaRESUMEN
BACKGROUND AND OBJECTIVES: Familial frontotemporal lobar degeneration (f-FTLD) is a phenotypically heterogeneous spectrum of neurodegenerative disorders most often caused by variants within chromosome 9 open reading frame 72 (C9orf72), microtubule-associated protein tau (MAPT), or granulin (GRN). The phenotypic association with each of these genes is incompletely understood. We hypothesized that the frequency of specific clinical features would correspond with different genes. METHODS: We screened the Advancing Research and Treatment in Frontotemporal Lobar Degeneration (ARTFL)/Longitudinal Evaluation of Familial Frontotemporal Dementia Subjects (LEFFTDS)/ARTFL LEFFTDS Longitudinal Frontotemporal Lobar Degeneration Consortium for symptomatic carriers of pathogenic variants in C9orf72, MAPT, or GRN. We assessed for clinical differences among these 3 groups based on data recorded as part of a detailed neurologic examination, the Progressive Supranuclear Palsy Rating Scale, Progressive Supranuclear Palsy-Quality of Life Rating Scale, Unified Parkinson's Disease Rating Scale Part III (motor items), and the Amyotrophic Lateral Sclerosis Functional Rating Scale, revised version. Data were analyzed using Kruskal-Wallis and Wilcoxon rank-sum tests and Fisher exact test. RESULTS: We identified 184 symptomatic participants who had a single pathogenic variant in C9orf72 (n = 88), MAPT (n = 53), or GRN (n = 43). Motor symptom age at onset was earliest in the MAPT participants followed by C9orf72, whereas the GRN pathogenic variant carriers developed symptoms later. C9orf72 participants more often had fasciculations, muscle atrophy, and weakness, whereas parkinsonism was less frequent. Vertical oculomotor abnormalities were more common in the MAPT cohort, whereas apraxia and focal limb dystonia occurred more often in participants with GRN variants. DISCUSSION: We present a large comparative study of motor features in C9orf72, MAPT, and GRN pathogenic variant carriers with symptomatic f-FTLD. Our findings demonstrate characteristic phenotypic differences corresponding with specific gene variants that increase our understanding of the genotype-phenotype relationship in this complex spectrum of neurodegenerative disorders. TRIAL REGISTRATION INFORMATION: NCT02365922, NCT02372773, and NCT04363684.
Asunto(s)
Demencia Frontotemporal , Degeneración Lobar Frontotemporal , Parálisis Supranuclear Progresiva , Proteína C9orf72/genética , Demencia Frontotemporal/diagnóstico , Demencia Frontotemporal/genética , Degeneración Lobar Frontotemporal/genética , Granulinas/genética , Humanos , Mutación/genética , Progranulinas/genética , Calidad de Vida , Proteínas tau/genéticaRESUMEN
BACKGROUND AND OBJECTIVES: Changes in social behavior are common symptoms of frontotemporal lobar degeneration (FTLD) and Alzheimer's disease syndromes. For early identification of individual patients and differential diagnosis, sensitive clinical measures are required that are able to assess patterns of behaviors and detect syndromic differences in both asymptomatic and symptomatic stages. We investigated whether the examiner-based Social Behavior Observer Checklist (SBOCL) is sensitive to early behavior changes and reflects disease severity within and between neurodegenerative syndromes. METHODS: Asymptomatic individuals and neurodegenerative disease patients were selected from the multisite ALLFTD cohort study. In a sample of participants with at least one timepoint of SBOCL data, we investigated whether the Disorganized, Reactive, and Insensitive subscales of the SBOCL change as a function of disease stage within and between these syndromes. In a longitudinal subsample with both SBOCL and neuroimaging data, we examined whether change over time on each subscale corresponds to progressive gray matter atrophy. RESULTS: 1082 FTLD mutation carriers and non-carriers were enrolled (282 asymptomatic, 341 behavioral variant frontotemporal dementia, 114 semantic and 95 non-fluent variant primary progressive aphasia, 137 progressive supranuclear palsy, 113 Alzheimer's clinical syndrome). The Disorganized score increased between asymptomatic to very mild (p=0.016, estimate=-1.10, 95%CI=[-1.99, -0.22]), very mild to mild (p=0.013, -1.17, [-2.08, -0.26]), and mild to moderate/severe (p<0.001, -2.00, [-2.55, -1.45]) disease stages in behavioral variant frontotemporal dementia regardless of mutation status. Asymptomatic GRN pathogenic gene variant carriers showed more Reactive behaviors (preoccupation with time: p=0.001, 1.11, [1.06, 1.16]; self-consciousness: p=0.003, 1.77, [1.52, 2.01]) than asymptomatic non-carriers (1.01, [0.98, 1.03]; 1.31, [1.20, 1.41]). Insensitive score increased to a clinically abnormal level in advanced stages of behavioral variant frontotemporal dementia (p=0.003, -0.73, [-1.18, -0.29]). Higher scores on each subscale corresponded with higher caregiver burden (p<0.001). Greater change over time corresponded to greater fronto-subcortical atrophy in the semantic-appraisal and fronto-parietal intrinsically connected networks. DISCUSSION: The SBOCL is sensitive to early symptoms and reflects disease severity, with some evidence for progression across asymptomatic and symptomatic stages of FTLD syndromes; thus it may hold promise for early measurement and monitoring of behavioral symptoms in clinical practice and treatment trials. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that the Social Behavior Observer Checklist is sensitive to early behavioral changes in FTLD pathogenic variants and early symptomatic individuals in a highly educated patient cohort.
RESUMEN
Frontotemporal dementia (FTD) therapy development is hamstrung by a lack of susceptibility, diagnostic, and prognostic biomarkers. Blood neurofilament light (NfL) shows promise as a biomarker, but studies have largely focused only on core FTD syndromes, often grouping patients with different diagnoses. To expedite the clinical translation of NfL, we avail ARTFL LEFFTDS Longitudinal Frontotemporal Lobar Degeneration (ALLFTD) study resources and conduct a comprehensive investigation of plasma NfL across FTD syndromes and in presymptomatic FTD mutation carriers. We find plasma NfL is elevated in all studied syndromes, including mild cases; increases in presymptomatic mutation carriers prior to phenoconversion; and associates with indicators of disease severity. By facilitating the identification of individuals at risk of phenoconversion, and the early diagnosis of FTD, plasma NfL can aid in participant selection for prevention or early treatment trials. Moreover, its prognostic utility would improve patient care, clinical trial efficiency, and treatment outcome estimations.