RESUMEN
In chronic infections and cancer, T cells are exposed to prolonged antigen stimulation, resulting in loss of function (or exhaustion) and impairment of effective immunological protection. Exhausted T cells are heterogeneous and include early progenitors (Tpex) and terminally exhausted cells (Tex). Here, we used bulk and single-cell transcriptomics to analyze expression of transposable elements (TEs) in subpopulations of mouse and human CD8+ tumor-infiltrating T lymphocytes (TILs). We show that in mice, members of the virus-like murine VL30 TE family (mostly intact, evolutionary young ERV1s) are strongly repressed in terminally exhausted CD8+ T cells in both tumor and viral models of exhaustion. Tpex expression of these VL30s, which are mainly intergenic and transcribed independently of their closest gene neighbors, was driven by Fli1, a transcription factor involved in progression from Tpex to Tex. Immune checkpoint blockade (ICB) in both mice and patients with cancer increased TE expression (including VL30 in mice), demonstrating that TEs may be applicable as ICB response biomarkers. We conclude that expression of TEs is tightly regulated in TILs during establishment of exhaustion and reprogramming by ICB. Analyses of TE expression on single cells and bulk populations open opportunities for understanding immune cell identity and heterogeneity, as well as for defining cellular gene expression signatures and disease biomarkers.
Asunto(s)
Linfocitos T CD8-positivos , Neoplasias , Animales , Ratones , Humanos , Elementos Transponibles de ADN/genética , Agotamiento de Células T , BiomarcadoresRESUMEN
Dietary compounds can affect the development of inflammatory responses at distant sites. However, the mechanisms involved remain incompletely understood. Here, we addressed the influence on allergic responses of dietary agonists of aryl hydrocarbon receptor (AhR). In cutaneous papain-induced allergy, we found that lack of dietary AhR ligands exacerbates allergic responses. This phenomenon was tissue-specific as airway allergy was unaffected by the diet. In addition, lack of dietary AhR ligands worsened asthma-like allergy in a model of 'atopic march.' Mice deprived of dietary AhR ligands displayed impaired Langerhans cell migration, leading to exaggerated T cell responses. Mechanistically, dietary AhR ligands regulated the inflammatory profile of epidermal cells, without affecting barrier function. In particular, we evidenced TGF-ß hyperproduction in the skin of mice deprived of dietary AhR ligands, explaining Langerhans cell retention. Our work identifies an essential role for homeostatic activation of AhR by dietary ligands in the dampening of cutaneous allergic responses and uncovers the importance of the gut-skin axis in the development of allergic diseases.
Asunto(s)
Dermatitis Atópica , Dieta , Hipersensibilidad , Receptores de Hidrocarburo de Aril , Animales , Ratones , Células de Langerhans , Ligandos , Receptores de Hidrocarburo de Aril/agonistas , PielRESUMEN
Although most characterized tumor antigens are encoded by canonical transcripts (such as differentiation or tumor-testis antigens) or mutations (both driver and passenger mutations), recent results have shown that noncanonical transcripts including long noncoding RNAs and transposable elements (TEs) can also encode tumor-specific neo-antigens. Here, we investigate the presentation and immunogenicity of tumor antigens derived from noncanonical mRNA splicing events between coding exons and TEs. Comparing human non-small cell lung cancer (NSCLC) and diverse healthy tissues, we identified a subset of splicing junctions that is both tumor specific and shared across patients. We used HLA-I peptidomics to identify peptides encoded by tumor-specific junctions in primary NSCLC samples and lung tumor cell lines. Recurrent junction-encoded peptides were immunogenic in vitro, and CD8+ T cells specific for junction-encoded epitopes were present in tumors and tumor-draining lymph nodes from patients with NSCLC. We conclude that noncanonical splicing junctions between exons and TEs represent a source of recurrent, immunogenic tumor-specific antigens in patients with NSCLC.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Masculino , Humanos , Neoplasias Pulmonares/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Elementos Transponibles de ADN , Linfocitos T CD8-positivos/patología , Recurrencia Local de Neoplasia/genética , Exones/genética , Antígenos de Neoplasias/genéticaRESUMEN
Oncogenesis often implicates epigenetic alterations, including derepression of transposable elements (TEs) and defects in alternative splicing. Here, we explore the possibility that noncanonical splice junctions between exons and TEs represent a source of tumor-specific antigens. We show that mouse normal tissues and tumor cell lines express wide but distinct ranges of mRNA junctions between exons and TEs, some of which are tumor specific. Immunopeptidome analyses in tumor cell lines identified peptides derived from exon-TE splicing junctions associated to MHC-I molecules. Exon-TE junction-derived peptides were immunogenic in tumor-bearing mice. Both prophylactic and therapeutic vaccinations with junction-derived peptides delayed tumor growth in vivo. Inactivation of the TE-silencing histone 3-lysine 9 methyltransferase Setdb1 caused overexpression of new immunogenic junctions in tumor cells. Our results identify exon-TE splicing junctions as epigenetically controlled, immunogenic, and protective tumor antigens in mice, opening possibilities for tumor targeting and vaccination in patients with cancer.
Asunto(s)
Antígenos de Neoplasias , Elementos Transponibles de ADN , Animales , Ratones , Elementos Transponibles de ADN/genética , Antígenos de Neoplasias/genética , Exones/genética , ARN Mensajero , Línea Celular TumoralRESUMEN
Despite its crucial role in initiation of cytotoxic immune responses, the molecular pathways underlying antigen cross-presentation remain incompletely understood. The mechanism of antigen exit from endocytic compartments into the cytosol is a long-standing matter of controversy, confronting two main models: transfer through specific channels/transporters or rupture of endocytic membranes and leakage of luminal content. By monitoring the occurrence of intracellular damage in conventional dendritic cells (cDCs), we show that cross-presenting cDC1s display more frequent endomembrane injuries and increased recruitment of endosomal sorting complex required for transport (ESCRT)-III, the main repair system for intracellular membranes, relative to cDC2s. Silencing of CHMP2a or CHMP4b, two effector subunits of ESCRT-III, enhances cytosolic antigen export and cross-presentation. This phenotype is partially reversed by chemical inhibition of RIPK3, suggesting that endocytic damage is related to basal activation of the necroptosis pathway. Membrane repair therefore proves crucial in containing antigen export to the cytosol and cross-presentation in cDCs.
Asunto(s)
Reactividad Cruzada , Complejos de Clasificación Endosomal Requeridos para el Transporte , Presentación de Antígeno , Antígenos/metabolismo , Citosol/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismoRESUMEN
Cross-presentation of antigens by dendritic cells (DCs) is critical for initiation of anti-tumor immune responses. Yet, key steps involved in trafficking of antigens taken up by DCs remain incompletely understood. Here, we screen 700 US Food and Drug Administration (FDA)-approved drugs and identify 37 enhancers of antigen import from endolysosomes into the cytosol. To reveal their mechanism of action, we generate proteomic organellar maps of control and drug-treated DCs (focusing on two compounds, prazosin and tamoxifen). By combining organellar mapping, quantitative proteomics, and microscopy, we conclude that import enhancers undergo lysosomal trapping leading to membrane permeation and antigen release. Enhancing antigen import facilitates cross-presentation of soluble and cell-associated antigens. Systemic administration of prazosin leads to reduced growth of MC38 tumors and to a synergistic effect with checkpoint immunotherapy in a melanoma model. Thus, inefficient antigen import into the cytosol limits antigen cross-presentation, restraining the potency of anti-tumor immune responses and efficacy of checkpoint blockers.
Asunto(s)
Antineoplásicos/farmacología , Citosol/metabolismo , Endosomas/metabolismo , Inmunidad , Neoplasias/inmunología , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Antígenos/metabolismo , Transporte Biológico/efectos de los fármacos , Reactividad Cruzada/efectos de los fármacos , Citosol/efectos de los fármacos , Células Dendríticas/metabolismo , Degradación Asociada con el Retículo Endoplásmico/efectos de los fármacos , Endosomas/efectos de los fármacos , Inmunidad/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Transgénicos , Neoplasias/tratamiento farmacológico , Permeabilidad , Prazosina/farmacología , Quinazolinas/farmacología , Tamoxifeno/farmacología , beta-Lactamasas/metabolismoRESUMEN
Naive CD4+ T lymphocytes differentiate into different effector types, including helper and regulatory cells (Th and Treg, respectively). Heritable gene expression programs that define these effector types are established during differentiation, but little is known about the epigenetic mechanisms that install and maintain these programs. Here, we use mice defective for different components of heterochromatin-dependent gene silencing to investigate the epigenetic control of CD4+ T cell plasticity. We show that, upon T cell receptor (TCR) engagement, naive and regulatory T cells defective for TRIM28 (an epigenetic adaptor for histone binding modules) or for heterochromatin protein 1 ß and γ isoforms (HP1ß/γ, 2 histone-binding factors involved in gene silencing) fail to effectively signal through the PI3K-AKT-mTOR axis and switch to glycolysis. While differentiation of naive TRIM28-/- T cells into cytokine-producing effector T cells is impaired, resulting in reduced induction of autoimmune colitis, TRIM28-/- regulatory T cells also fail to expand in vivo and to suppress autoimmunity effectively. Using a combination of transcriptome and chromatin immunoprecipitation-sequencing (ChIP-seq) analyses for H3K9me3, H3K9Ac, and RNA polymerase II, we show that reduced effector differentiation correlates with impaired transcriptional silencing at distal regulatory regions of a defined set of Treg-associated genes, including, for example, NRP1 or Snai3. We conclude that TRIM28 and HP1ß/γ control metabolic reprograming through epigenetic silencing of a defined set of Treg-characteristic genes, thus allowing effective T cell expansion and differentiation into helper and regulatory phenotypes.
Asunto(s)
Diferenciación Celular/fisiología , Reprogramación Celular/fisiología , Proteínas Cromosómicas no Histona/metabolismo , Epigénesis Genética/fisiología , Linfocitos T/metabolismo , Proteína 28 que Contiene Motivos Tripartito/metabolismo , Animales , Autoinmunidad/fisiología , Linfocitos T CD4-Positivos/metabolismo , Diferenciación Celular/genética , Plasticidad de la Célula/fisiología , Reprogramación Celular/genética , Homólogo de la Proteína Chromobox 5 , Colon/patología , Citocinas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Silenciador del Gen , Histonas/metabolismo , Ratones , Ratones Noqueados , Fosfatidilinositol 3-Quinasas/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Transcriptoma , Proteína 28 que Contiene Motivos Tripartito/genéticaRESUMEN
Intracranial aneurysms (IAs) are acquired cerebrovascular abnormalities characterized by localized dilation and wall thinning in intracranial arteries, possibly leading to subarachnoid hemorrhage and severe outcome in case of rupture. Here, we identified one rare nonsense variant (c.1378A>T) in the last exon of ANGPTL6 (Angiopoietin-Like 6)-which encodes a circulating pro-angiogenic factor mainly secreted from the liver-shared by the four tested affected members of a large pedigree with multiple IA-affected case subjects. We showed a 50% reduction of ANGPTL6 serum concentration in individuals heterozygous for the c.1378A>T allele (p.Lys460Ter) compared to relatives homozygous for the normal allele, probably due to the non-secretion of the truncated protein produced by the c.1378A>T transcripts. Sequencing ANGPTL6 in a series of 94 additional index case subjects with familial IA identified three other rare coding variants in five case subjects. Overall, we detected a significant enrichment (p = 0.023) in rare coding variants within this gene among the 95 index case subjects with familial IA, compared to a reference population of 404 individuals with French ancestry. Among the 6 recruited families, 12 out of 13 (92%) individuals carrying IA also carry such variants in ANGPTL6, versus 15 out of 41 (37%) unaffected ones. We observed a higher rate of individuals with a history of high blood pressure among affected versus healthy individuals carrying ANGPTL6 variants, suggesting that ANGPTL6 could trigger cerebrovascular lesions when combined with other risk factors such as hypertension. Altogether, our results indicate that rare coding variants in ANGPTL6 are causally related to familial forms of IA.
Asunto(s)
Proteínas Similares a la Angiopoyetina/genética , Predisposición Genética a la Enfermedad , Aneurisma Intracraneal/genética , Mutación/genética , Sistemas de Lectura Abierta/genética , Proteína 6 similar a la Angiopoyetina , Proteínas Similares a la Angiopoyetina/sangre , Células Cultivadas , Codón sin Sentido/genética , Familia , Femenino , Células HEK293 , Humanos , Aneurisma Intracraneal/sangre , Masculino , Persona de Mediana Edad , Linaje , Factores de RiesgoRESUMEN
Abnormal activity of the renin-angiotensin-aldosterone system plays a causal role in the development of hypertension, atherosclerosis, and associated cardiovascular events such as myocardial infarction, stroke, and heart failure. As both a vasoconstrictor and a proinflammatory mediator, angiotensin II (Ang II) is considered a potential link between hypertension and atherosclerosis. However, a role for Ang II-induced inflammation in atherosclerosis has not been clearly established, and the molecular mechanisms and intracellular signaling pathways involved are not known. Here, we demonstrated that the RhoA GEF Arhgef1 is essential for Ang II-induced inflammation. Specifically, we showed that deletion of Arhgef1 in a murine model prevents Ang II-induced integrin activation in leukocytes, thereby preventing Ang II-induced recruitment of leukocytes to the endothelium. Mice lacking both LDL receptor (LDLR) and Arhgef1 were protected from high-fat diet-induced atherosclerosis. Moreover, reconstitution of Ldlr-/- mice with Arhgef1-deficient BM prevented high-fat diet-induced atherosclerosis, while reconstitution of Ldlr-/- Arhgef1-/- with WT BM exacerbated atherosclerotic lesion formation, supporting Arhgef1 activation in leukocytes as causal in the development of atherosclerosis. Thus, our data highlight the importance of Arhgef1 in cardiovascular disease and suggest targeting Arhgef1 as a potential therapeutic strategy against atherosclerosis.