Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Dev Biol ; 431(2): 226-238, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-28916169

RESUMEN

Split ends (SPEN) is the founding member of a well conserved family of nuclear proteins with critical functions in transcriptional regulation and the post-transcriptional processing and nuclear export of transcripts. In animals, the SPEN proteins fall into two size classes that perform either complementary or antagonistic functions in different cellular contexts. Here, we show that the two Drosophila representatives of this family, SPEN and Spenito (NITO), regulate metamorphic remodeling of the CCAP/bursicon neurosecretory cells. CCAP/bursicon cell-targeted overexpression of SPEN had no effect on the larval morphology or the pruning back of the CCAP/bursicon cell axons at the onset of metamorphosis. During the subsequent outgrowth phase of metamorphic remodeling, overexpression of either SPEN or NITO strongly inhibited axon extension, axon branching, peripheral neuropeptide accumulation, and soma growth. Cell-targeted loss-of-function alleles for both spen and nito caused similar reductions in axon outgrowth, indicating that the absolute levels of SPEN and NITO activity are critical to support the developmental plasticity of these neurons. Although nito RNAi did not affect SPEN protein levels, the phenotypes produced by SPEN overexpression were suppressed by nito RNAi. We propose that SPEN and NITO function additively or synergistically in the CCAP/bursicon neurons to regulate multiple aspects of neurite outgrowth during metamorphic remodeling.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Familia de Multigenes , Proyección Neuronal , Sistemas Neurosecretores/citología , Sistemas Neurosecretores/metabolismo , Animales , Larva/metabolismo , Neuronas/metabolismo , Neurosecreción , Terminales Presinápticos/metabolismo , Interferencia de ARN , Alas de Animales/metabolismo
2.
Genetics ; 206(3): 1429-1443, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28476867

RESUMEN

During development, neuronal remodeling shapes neuronal connections to establish fully mature and functional nervous systems. Our previous studies have shown that the RNA-binding factor alan shepard (shep) is an important regulator of neuronal remodeling during metamorphosis in Drosophila melanogaster, and loss of shep leads to smaller soma size and fewer neurites in a stage-dependent manner. To shed light on the mechanisms by which shep regulates neuronal remodeling, we conducted a genetic modifier screen for suppressors of shep-dependent wing expansion defects and cellular morphological defects in a set of peptidergic neurons, the bursicon neurons, that promote posteclosion wing expansion. Out of 702 screened deficiencies that covered 86% of euchromatic genes, we isolated 24 deficiencies as candidate suppressors, and 12 of them at least partially suppressed morphological defects in shep mutant bursicon neurons. With RNA interference and mutant alleles of individual genes, we identified Daughters against dpp (Dad) and Olig family (Oli) as shep suppressor genes, and both of them restored the adult cellular morphology of shep-depleted bursicon neurons. Dad encodes an inhibitory Smad protein that inhibits bone morphogenetic protein (BMP) signaling, raising the possibility that shep interacted with BMP signaling through antagonism of Dad By manipulating expression of the BMP receptor tkv, we found that activated BMP signaling was sufficient to rescue loss-of-shep phenotypes. These findings reveal mechanisms of shep regulation during neuronal development, and they highlight a novel genetic shep interaction with the BMP signaling pathway that controls morphogenesis in mature, terminally differentiated neurons during metamorphosis.


Asunto(s)
Genes Modificadores , Metamorfosis Biológica , Neuronas/citología , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Genoma de los Insectos , Neurogénesis , Neuronas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas de Unión al ARN/genética , Receptores de Superficie Celular/genética , Transducción de Señal
3.
Genetics ; 197(4): 1267-83, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24931409

RESUMEN

Peptidergic neurons are a group of neuronal cells that synthesize and secrete peptides to regulate a variety of biological processes. To identify genes controlling the development and function of peptidergic neurons, we conducted a screen of 545 splice-trap lines and identified 28 loci that drove expression in peptidergic neurons when crossed to a GFP reporter transgene. Among these lines, an insertion in the alan shepard (shep) gene drove expression specifically in most peptidergic neurons. shep transcripts and SHEP proteins were detected primarily and broadly in the central nervous system (CNS) in embryos, and this expression continued into the adult stage. Loss of shep resulted in late pupal lethality, reduced adult life span, wing expansion defects, uncoordinated adult locomotor activities, rejection of males by virgin females, and reduced neuropil area and reduced levels of multiple presynaptic markers throughout the adult CNS. Examination of the bursicon neurons in shep mutant pharate adults revealed smaller somata and fewer axonal branches and boutons, and all of these cellular phenotypes were fully rescued by expression of the most abundant wild-type shep isoform. In contrast to shep mutant animals at the pharate adult stage, shep mutant larvae displayed normal bursicon neuron morphologies. Similarly, shep mutant adults were uncoordinated and weak, while shep mutant larvae displayed largely, although not entirely, normal locomotor behavior. Thus, shep played an important role in the metamorphic development of many neurons.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Regulación del Desarrollo de la Expresión Génica , Metamorfosis Biológica/genética , Neurogénesis/genética , Proteínas de Unión al ARN/metabolismo , Animales , Sistema Nervioso Central/embriología , Proteínas de Drosophila/genética , Femenino , Sitios Genéticos , Larva/genética , Masculino , Datos de Secuencia Molecular , Neuronas/metabolismo , Fenotipo , Filogenia , Proteínas de Unión al ARN/genética , Análisis de Secuencia de ARN
4.
Proc Natl Acad Sci U S A ; 111(9): 3597-601, 2014 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-24550480

RESUMEN

Neurons vary in their capacity to produce, store, and release neuropeptides packaged in dense-core vesicles (DCVs). Specifically, neurons used for cotransmission have terminals that contain few DCVs and many small synaptic vesicles, whereas neuroendocrine neuron terminals contain many DCVs. Although the mechanistic basis for presynaptic variation is unknown, past research demonstrated transcriptional control of neuropeptide synthesis suggesting that supply from the soma limits presynaptic neuropeptide accumulation. Here neuropeptide release is shown to scale with presynaptic neuropeptide stores in identified Drosophila cotransmitting and neuroendocrine terminals. However, the dramatic difference in DCV number in these terminals occurs with similar anterograde axonal transport and DCV half-lives. Thus, differences in presynaptic neuropeptide stores are not explained by DCV delivery from the soma or turnover. Instead, greater neuropeptide accumulation in neuroendocrine terminals is promoted by dramatically more efficient presynaptic DCV capture. Greater capture comes with tradeoffs, however, as fewer uncaptured DCVs are available to populate distal boutons and replenish neuropeptide stores following release. Finally, expression of the Dimmed transcription factor in cotransmitting neurons increases presynaptic DCV capture. Therefore, DCV capture in the terminal is genetically controlled and determines neuron-specific variation in peptidergic function.


Asunto(s)
Drosophila/fisiología , Neuropéptidos/metabolismo , Sistemas Neurosecretores/metabolismo , Transmisión Sináptica/fisiología , Vesículas Transportadoras/fisiología , Animales , Microscopía Confocal , Sistemas Neurosecretores/fisiología , Terminales Presinápticos/metabolismo , Vesículas Transportadoras/metabolismo
5.
Biol Open ; 3(1): 81-93, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24357229

RESUMEN

Although the growth capacity of mature neurons is often limited, some neurons can shift through largely unknown mechanisms from stable maintenance growth to dynamic, organizational growth (e.g. to repair injury, or during development transitions). During insect metamorphosis, many terminally differentiated larval neurons undergo extensive remodeling, involving elimination of larval neurites and outgrowth and elaboration of adult-specific projections. Here, we show in the fruit fly, Drosophila melanogaster (Meigen), that a metamorphosis-specific increase in insulin signaling promotes neuronal growth and axon branching after prolonged stability during the larval stages. FOXO, a negative effector in the insulin signaling pathway, blocked metamorphic growth of peptidergic neurons that secrete the neuropeptides CCAP and bursicon. RNA interference and CCAP/bursicon cell-targeted expression of dominant-negative constructs for other components of the insulin signaling pathway (InR, Pi3K92E, Akt1, S6K) also partially suppressed the growth of the CCAP/bursicon neuron somata and neurite arbor. In contrast, expression of wild-type or constitutively active forms of InR, Pi3K92E, Akt1, Rheb, and TOR, as well as RNA interference for negative regulators of insulin signaling (PTEN, FOXO), stimulated overgrowth. Interestingly, InR displayed little effect on larval CCAP/bursicon neuron growth, in contrast to its strong effects during metamorphosis. Manipulations of insulin signaling in many other peptidergic neurons revealed generalized growth stimulation during metamorphosis, but not during larval development. These findings reveal a fundamental shift in growth control mechanisms when mature, differentiated neurons enter a new phase of organizational growth. Moreover, they highlight strong evolutionarily conservation of insulin signaling in neuronal growth regulation.

6.
PLoS Genet ; 8(8): e1002883, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22912598

RESUMEN

The ecdysone receptor is a heterodimer of two nuclear receptors, the Ecdysone receptor (EcR) and Ultraspiracle (USP). In Drosophila melanogaster, three EcR isoforms share common DNA and ligand-binding domains, but these proteins differ in their most N-terminal regions and, consequently, in the activation domains (AF1s) contained therein. The transcriptional coactivators for these domains, which impart unique transcriptional regulatory properties to the EcR isoforms, are unknown. Activating transcription factor 4 (ATF4) is a basic-leucine zipper transcription factor that plays a central role in the stress response of mammals. Here we show that Cryptocephal (CRC), the Drosophila homolog of ATF4, is an ecdysone receptor coactivator that is specific for isoform B2. CRC interacts with EcR-B2 to promote ecdysone-dependent expression of ecdysis-triggering hormone (ETH), an essential regulator of insect molting behavior. We propose that this interaction explains some of the differences in transcriptional properties that are displayed by the EcR isoforms, and similar interactions may underlie the differential activities of other nuclear receptors with distinct AF1-coactivators.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Receptores de Esteroides/genética , Factores de Transcripción/genética , Activación Transcripcional , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Animales , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Hormonas de Insectos/genética , Hormonas de Insectos/metabolismo , Muda , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Multimerización de Proteína , Estructura Terciaria de Proteína , Receptores de Esteroides/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética
7.
Proc Natl Acad Sci U S A ; 108(11): 4477-81, 2011 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-21368121

RESUMEN

Synaptic release of neurotransmitters is evoked by activity-dependent Ca(2+) entry into the nerve terminal. However, here it is shown that robust synaptic neuropeptide release from Drosophila motoneurons is evoked in the absence of extracellular Ca(2+) by octopamine, the arthropod homolog to norepinephrine. Genetic and pharmacology experiments demonstrate that this surprising peptidergic transmission requires cAMP-dependent protein kinase, with only a minor contribution of exchange protein activated by cAMP (epac). Octopamine-evoked neuropeptide release also requires endoplasmic reticulum Ca(2+) mobilization by the ryanodine receptor and the inositol trisphosphate receptor. Hence, rather than relying exclusively on activity-dependent Ca(2+) entry into the nerve terminal, a behaviorally important neuromodulator uses synergistic cAMP-dependent protein kinase and endoplasmic reticulum Ca(2+) signaling to induce synaptic neuropeptide release.


Asunto(s)
Calcio/metabolismo , Terminaciones Nerviosas/efectos de los fármacos , Terminaciones Nerviosas/metabolismo , Neuropéptidos/metabolismo , Octopamina/farmacología , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Animales , Señalización del Calcio/efectos de los fármacos , AMP Cíclico/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/efectos de los fármacos , Drosophila melanogaster/metabolismo , Retículo Endoplásmico/metabolismo , Espacio Extracelular/efectos de los fármacos , Espacio Extracelular/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo
8.
Trends Endocrinol Metab ; 19(9): 317-23, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18805704

RESUMEN

Hormone-dependent rewiring of axons and dendrites is a conserved feature of nervous system development and plasticity. During metamorphosis in insects, steroid hormones (the ecdysteroids) and terpenoid hormones (the juvenile hormones) regulate extensive remodeling of the nervous system. These changes retool the nervous system for new behavioral and physiological functions that are required for the adult stage of the life cycle. In honey bees and other highly social insects, hormones also regulate behavioral changes and neuronal plasticity associated with transitions between social caste roles. This review focuses on recent work in fruit flies and honey bees that reveals hormonal and molecular mechanisms underlying metamorphic and caste-dependent neuronal remodeling, with specific emphasis on the role of Krüppel homolog 1.


Asunto(s)
Abejas/fisiología , Conducta Animal/fisiología , Drosophila/fisiología , Plasticidad Neuronal/fisiología , Animales , Ecdisteroides/fisiología , Hormonas Juveniles/fisiología , Modelos Biológicos
9.
Genetics ; 178(2): 883-901, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18245346

RESUMEN

The normal functioning of neuroendocrine systems requires that many neuropeptidergic cells change, to alter transmitter identity and concentration, electrical properties, and cellular morphology in response to hormonal cues. During insect metamorphosis, a pulse of circulating steroids, ecdysteroids, governs the dramatic remodeling of larval neurons to serve adult-specific functions. To identify molecular mechanisms underlying metamorphic remodeling, we conducted a neuropeptidergic cell-targeted, gain-of-function genetic screen. We screened 6097 lines. Each line permitted Gal4-regulated transcription of flanking genes. A total of 58 lines, representing 51 loci, showed defects in neuropeptide-mediated developmental transitions (ecdysis or wing expansion) when crossed to the panneuropeptidergic Gal4 driver, 386Y-Gal4. In a secondary screen, we found 29 loci that produced wing expansion defects when crossed to a crustacean cardioactive peptide (CCAP)/bursicon neuron-specific Gal4 driver. At least 14 loci disrupted the formation or maintenance of adult-specific CCAP/bursicon cell projections during metamorphosis. These include components of the insulin and epidermal growth factor signaling pathways, an ecdysteroid-response gene, cabut, and an ubiquitin-specific protease gene, fat facets, with known functions in neuronal development. Several additional genes, including three micro-RNA loci and two factors related to signaling by Myb-like proto-oncogenes, have not previously been implicated in steroid signaling or neuronal remodeling.


Asunto(s)
Linaje de la Célula/genética , Drosophila melanogaster/genética , Pruebas Genéticas/métodos , Sistemas Neurosecretores/fisiología , Esteroides/fisiología , Animales , ADN/genética , Elementos Transponibles de ADN , Hibridación in Situ , ARN/genética , Transgenes
10.
J Neurosci ; 27(29): 7799-806, 2007 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-17634373

RESUMEN

Although it has been postulated that vesicle mobility is increased to enhance release of transmitters and neuropeptides, the mechanism responsible for increasing vesicle motion in nerve terminals and the effect of perturbing this mobilization on synaptic plasticity are unknown. Here, green fluorescent protein-tagged dense-core vesicles (DCVs) are imaged in Drosophila motor neuron terminals, where DCV mobility is increased for minutes after seconds of activity. Ca2+-induced Ca2+ release from presynaptic endoplasmic reticulum (ER) is shown to be necessary and sufficient for sustained DCV mobilization. However, this ryanodine receptor (RyR)-mediated effect is short-lived and only initiates signaling. Calmodulin kinase II (CaMKII), which is not activated directly by external Ca2+ influx, then acts as a downstream effector of released ER Ca2+. RyR and CaMKII are essential for post-tetanic potentiation of neuropeptide secretion. Therefore, the presynaptic signaling pathway for increasing DCV mobility is identified and shown to be required for synaptic plasticity.


Asunto(s)
Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Unión Neuromuscular/citología , Neuropéptidos/metabolismo , Terminales Presinápticos/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/fisiología , Vesículas Sinápticas/fisiología , Animales , Animales Modificados Genéticamente , Cafeína/farmacología , Calcimicina/análogos & derivados , Calcimicina/farmacología , Calcio/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Proteínas Quinasas Dependientes de Calcio-Calmodulina/genética , Drosophila , Proteínas de Drosophila/genética , Interacciones Farmacológicas , Estimulación Eléctrica/métodos , Inhibidores Enzimáticos/farmacología , Proteínas Fluorescentes Verdes/biosíntesis , Calor , Larva , Mutación/fisiología , Inhibidores de Fosfodiesterasa/farmacología , Terminales Presinápticos/efectos de los fármacos , Terminales Presinápticos/ultraestructura , Rianodina/farmacología , Vesículas Sinápticas/efectos de los fármacos
11.
J Neurosci ; 26(30): 7860-9, 2006 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-16870731

RESUMEN

During differentiation, neuroendocrine cells acquire highly amplified capacities to synthesize neuropeptides to overcome dilution of these signals in the general circulation. Once mature, the normal functioning of integrated physiological systems requires that neuroendocrine cells remain plastic to dramatically alter neuropeptide expression for long periods in response to hormonal and electrical cues. The mechanisms underlying the long-term regulation of neuroendocrine systems are poorly understood. Here we show that the Drosophila basic helix-loop-helix protein DIMM, a critical regulator of neuroendocrine cell differentiation, controls secretory capacity in mature neurons. DIMM expression began embryonically but persisted in adults. Through spatial and temporal manipulation of transgene expression in vivo, we defined two phases of prosecretory DIMM activity. During an embryonic critical window, DIMM controlled the differentiation of amplified expression of the neuropeptide leucokinin. At the onset of metamorphosis, levels of DIMM decreased in the insulin-producing cells (IPCs) in parallel with a marked reduction in levels of Drosophila insulin-like peptide 2 and a key neuropeptide biosynthetic enzyme peptidylglycine alpha-monooxygenase (PHM). Overexpression of DIMM in the IPCs prevented the decrease in PHM levels at this stage. In addition, transient overexpression of DIMM in adults produced a dramatic increase in PHM levels in numerous neurons located throughout the brain. These findings provide insights into the mechanisms controlling the maintenance of differentiated cell states, and they suggest an effective means for dynamically adjusting the strength of hormonal signals in diverse homeostatic systems.


Asunto(s)
Envejecimiento/fisiología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/fisiología , Neuronas/citología , Neuronas/fisiología , Neuropéptidos/metabolismo , Animales , Diferenciación Celular , Células Cultivadas , Drosophila/anatomía & histología , Regulación del Desarrollo de la Expresión Génica/fisiología
12.
J Exp Biol ; 209(Pt 10): 1803-15, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16651547

RESUMEN

The regulation of neuropeptide and peptide hormone gene expression is essential for the development and function of neuroendocrine cells in integrated physiological networks. In insects, a decline in circulating ecdysteroids triggers the activation of a neuroendocrine system to stimulate ecdysis, the behaviors used to shed the old cuticle at the culmination of each molt. Here we show that two evolutionarily conserved transcription factor genes, the basic helix-loop-helix (bHLH) gene dimmed (dimm) and the basic-leucine zipper (bZIP) gene cryptocephal (crc), control expression of diverse neuropeptides and peptide hormones in Drosophila. Central nervous system expression of three neuropeptide genes, Dromyosuppressin, FMRFamide-related and Leucokinin, is activated by dimm. Expression of Ecdysis triggering hormone (ETH) in the endocrine Inka cells requires crc; homozygous crc mutant larvae display markedly reduced ETH levels and corresponding defects in ecdysis. crc activates ETH expression though a 382 bp enhancer, which completely recapitulates the ETH expression pattern. The enhancer contains two evolutionarily conserved regions, and both are imperfect matches to recognition elements for activating transcription factor-4 (ATF-4), the vertebrate ortholog of the CRC protein and an important intermediate in cellular responses to endoplasmic reticulum stress. These regions also contain a putative ecdysteroid response element and a predicted binding site for the products of the E74 ecdysone response gene. These results suggest that convergence between ATF-related signaling and an important intracellular steroid response pathway may contribute to the neuroendocrine regulation of insect molting.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Hormonas/metabolismo , Neuropéptidos/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Regulación hacia Abajo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Larva/metabolismo , Factores de Transcripción/genética
13.
Biophys J ; 90(6): L45-7, 2006 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-16428282

RESUMEN

The acidity of mammalian secretory vesicles drives concentration and processing of their contents. Here, pH-sensitive green fluorescent protein (GFP) variants show that the > or =30-fold (H+) difference between secretory vesicles (pH < or = 5.7) and the cytoplasm (pH = 7.2) in mammalian cells is not present in peptidergic and small synaptic vesicles of the Drosophila neuromuscular junction. First, we find that fluorescence from Topaz-tagged atrial natriuretic factor, a peptidergic vesicle pH indicator, is only modestly affected by collapsing the H+ gradient in type III synaptic boutons. Quantitation shows that peptidergic vesicles are nearly neutral (pH = 6.74 +/- 0.05), even when temperature is elevated. Furthermore, small synaptic vesicles in glutamatergic synaptic boutons, studied with synaptophluorin, are as alkaline as peptidergic vesicles. Finally, yellow fluorescent protein measurements show that cytoplasmic pH is only slightly different than in mammals (pH = 7.4). Thus, the marked acidity of mammalian secretory vesicles is not conserved in evolution, and a modest vesicular H+ gradient is sufficient for supporting neurotransmission.


Asunto(s)
Factor Natriurético Atrial/química , Drosophila melanogaster/química , Terminales Presinápticos/química , Vesículas Secretoras/química , Animales , Células Cultivadas , Concentración de Iones de Hidrógeno , Temperatura
14.
Nat Neurosci ; 8(2): 173-8, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15643430

RESUMEN

Despite the importance of neuropeptide release, which is evoked by long bouts of action potential activity and which regulates behavior, peptidergic vesicle movement has not been examined in living nerve terminals. Previous in vitro studies have found that secretory vesicle motion at many sites of release is constitutive: Ca(2+) does not affect the movement of small synaptic vesicles in nerve terminals or the movement of large dense core vesicles in growth cones and endocrine cells. However, in vivo imaging of a neuropeptide, atrial natriuretic factor, tagged with green fluorescent protein in larval Drosophila melanogaster neuromuscular junctions shows that peptidergic vesicle behavior in nerve terminals is sensitive to activity-induced Ca(2+) influx. Specifically, peptidergic vesicles are immobile in resting synaptic boutons but become mobile after seconds of stimulation. Vesicle movement is undirected, occurs without the use of axonal transport motors or F-actin, and aids in the depletion of undocked neuropeptide vesicles. Peptidergic vesicle mobilization and post-tetanic potentiation of neuropeptide release are sustained for minutes.


Asunto(s)
Factor Natriurético Atrial/metabolismo , Unión Neuromuscular/fisiología , Vesículas Secretoras/metabolismo , Vesículas Sinápticas/metabolismo , Animales , Animales Modificados Genéticamente , Factor Natriurético Atrial/genética , Cadmio/farmacología , Calcio/metabolismo , Citocalasina D/farmacología , Diagnóstico por Imagen/métodos , Relación Dosis-Respuesta en la Radiación , Drosophila , Estimulación Eléctrica/métodos , Inhibidores Enzimáticos/farmacología , Etilmaleimida/farmacología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Técnicas In Vitro , Microscopía Confocal/métodos , Unión Neuromuscular/efectos de los fármacos , Unión Neuromuscular/efectos de la radiación , Inhibidores de la Síntesis del Ácido Nucleico/farmacología , Fotoblanqueo , Terminales Presinápticos/efectos de los fármacos , Terminales Presinápticos/metabolismo , Terminales Presinápticos/efectos de la radiación , Vesículas Secretoras/efectos de los fármacos , Vesículas Secretoras/efectos de la radiación , Vesículas Sinápticas/efectos de los fármacos , Vesículas Sinápticas/efectos de la radiación , Factores de Tiempo
15.
Development ; 130(9): 1771-81, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-12642483

RESUMEN

Neuroendocrine cells are specialized to produce, maintain and release large stores of secretory peptides. We show that the Drosophila dimmed/Mist1 bHLH gene confers such a pro-secretory phenotype on neuroendocrine cells. dimmed is expressed selectively in central and peripheral neuroendocrine cells. In dimmed mutants, these cells survive, and adopt normal cell fates and morphology. However, they display greatly diminished levels of secretory peptide mRNAs, and of diverse peptides and proteins destined for regulated secretion. Secretory peptide levels are lowered even in the presence of artificially high secretory peptide mRNA levels. In addition, overexpression of dimmed in a wild-type background produces a complimentary phenotype: an increase in secretory peptide levels by neuroendocrine cells, and an increase in the number of cells displaying a neuroendocrine phenotype. We propose that dimmed encodes an integral component of a novel mechanism by which diverse neuroendocrine lineages differentiate and maintain the pro-secretory state.


Asunto(s)
Diferenciación Celular/fisiología , Proteínas de Drosophila , Drosophila/embriología , Sistemas Neurosecretores/embriología , Factores de Transcripción/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Secuencias Hélice-Asa-Hélice , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...