Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Photochem Photobiol Sci ; 21(9): 1601-1616, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35644001

RESUMEN

In this study, simultaneous photocatalytic degradation of different parabens (methyl-, ethyl-, propyl-, and butyl paraben) and UV filters (benzophenone-3, 4-methylbenzylidene camphor, 2-ethylhexyl 4-(dimethylamino) benzoate, ethylhexyl methoxycinnamate and octocrylene) in water matrices was performed under visible light irradiation using novel double plasmonic Ag@Ag3PO4/Ag@AgCl nanophotocatalyst, synthesized by an easy and fast photochemical conversion and photo-reduction. It was found that the nanophotocatalyst with appropriate mole ratio of Ag@Ag3PO4/Ag@AgCl (1:3) showed superior photocatalytic activity than individual plasmonic nanoparticles. This is because there are two simultaneous surface plasmon resonances (SPR) generated by the metallic Ag nanoparticles, in addition to the hetero-junction structure formed at the interface between Ag@Ag3PO4 and Ag@AgCl. The structures of the synthesized photocatalysts were characterized, and the principal reactive oxygen species in the photocatalytic process were identified via a trapping experiment, confirming superoxide radicals (∙O2-) as the key reactive species of the photocatalytic system. The process of photodegradation of the target pollutants was monitored using an optimized method that incorporated solid-phase extraction in combination with gas chromatography-mass spectrometry. The simultaneous photodegradation process was modeled and optimized using central composite design. The kinetic study revealed that the degradation process over Ag@Ag3PO4 (30%)/Ag@AgCl (70%) under visible light followed a pseudo-first-order kinetic model. The simultaneous degradation of target compounds was further investigated in sewage treatment plant effluent as well as tap water. It was found that the matrix constituents can reduce the photodegradation efficiency, especially in the case of highly contaminated samples.


Asunto(s)
Nanopartículas del Metal , Compuestos de Plata , Catálisis , Luz , Nanopartículas del Metal/química , Parabenos , Plata/química , Compuestos de Plata/química , Agua
2.
Talanta ; 221: 121445, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33076069

RESUMEN

In this research, 9-methylacridine and 9-undecylacridine were synthesized through Bernthsen's reaction and well characterized using gas chromatography-mass spectrometry (GC-MS) and nuclear magnetic resonance (NMR). Two mixed-mode stationary phases were developed by functionalizing silica with 9-methylacridine and 9-undecylacridine. Then, two modified silicas were characterized by elemental analysis, thermogravimetric analysis (TGA), and fourier transform-infrared spectroscopy (FT-IR). Due to the extent of conjugative rings, the hydrophobic hydrocarbon chain, and anion exchange sites of 9-methylacridinium and 9-undecylacridinium group on the silica gel of columns, mixed-mode stationary phases were designed with multiple interactions including π-π stacking interaction, reverse phase, hydrophilic interaction, and anion exchange. According to the type of acridine, different interactions may be formed in the target column. Polycyclic aromatic hydrocarbons (PAHs), alkylbenzenes, pyridines and parabens were chromatographed on π-π stacking modes and RPLC, where anion exchange sites can be applied for the separation of inorganic anions on AEC mode. Considering the structure of the stationary phases, these columns were used to separate organic compounds with higher polarity on the HILIC retention. The performance of the columns was investigated by the chromatographic parameters in terms of column efficiency (N/m), asymmetry factor (Af), retention factor (k), and resolution (Rs). The mixed-mode stationary phases can be successfully employed to conduct chromatographic separation on a wide range of samples with a single column.

3.
J Pharm Biomed Anal ; 191: 113528, 2020 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-32916561

RESUMEN

Solid phase microextraction on a screw was utilized for the extraction of hexanal and heptanal as lung cancer biomarkers from urine samples. Reduced graphene oxide (rGO) was coated on the surface of a stainless-steel set screw by electrophoretic deposition method. The screw was located inside a glass cover, and the created channel acted as the sample solution flow pass. A 5 mL glass syringe was connected to a syringe pump to direct the sample and the eluent through the channel. The extraction procedure was followed by gas chromatography/mass spectrometry (GC/MS) for separation and determination of the extracted aldehydes. The effective parameters on the extraction efficiencies of the analytes were identified and optimized. Under the optimal extraction conditions, the extraction time was as short as 10 min. The calibration curves indicated good linearity (R2 > 0.97) within the concentration range of 1.0-50 µg L-1. The obtained limits of detection (LODs) for hexanal and heptanal were down to 0.4 and 0.3 µg L-1, respectively. Considering the repeatability, simplicity, and eco-friendliness of this simple extraction method, it can be efficiently used for preconcentration of aldehydes in different samples.


Asunto(s)
Biomarcadores de Tumor , Neoplasias , Aldehídos , Tornillos Óseos , Pulmón , Microextracción en Fase Sólida
4.
J Chromatogr A ; 1511: 92-100, 2017 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-28689579

RESUMEN

Here we report the characteristics of a new synthesized ionic liquid, 1,9-di(N-naphthalen-2-ylimidazolium)nonane bis[(trifluoromethyl)sulfonyl]imide ([C9(2NPTim)2][(NTf2)2]), as a stationary phase by inverse gas chromatography. The McReynolds constants demonstrated that the [C9(2NPTim)2][(NTf2)2] had an average polarity of 667 and polarity number P.N.=75, suggesting its polar nature. The solvation properties of the new stationary phase were determined by the calculation of Abraham solvation system constants, whereby the results showed that its major interactions with the analytes included H-bond basicity (a), dipole-dipole (s) and dispersive (l) interactions. The activity coefficients (γ∞) and selectivities (SIJ∞) at infinite dilution were also determined for various polar and nonpolar organic solutes at different temperatures. The separation performance of the [C9(2NPTim)2][(NTf2)2] stationary phase was evaluated by GC separations of different analytes, including normal alkanes and aromatic compounds. The TGA results showed that the stationary phase had high thermal stability up to 420°C.


Asunto(s)
Cromatografía de Gases/métodos , Imidazoles/química , Líquidos Iónicos/química , Cationes/química , Enlace de Hidrógeno , Temperatura , Termodinámica
5.
Analyst ; 140(2): 497-505, 2015 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-25407231

RESUMEN

A new in-tube solid phase microextraction approach named electrochemically controlled in-tube solid phase microextraction (EC in-tube SPME) has been reported. In this approach, in which electrochemistry and in-tube SPME were combined, the total analysis time was decreased and the sensitivity was increased. After electropolymerization of pyrrole on the inner surface of a stainless steel tube, the polypyrrole (PPy)-coated in-tube SPME was coupled on-line to high performance liquid chromatography (HPLC) to achieve automated in-tube SPME-HPLC analysis. After the completion of the EC-in-tube SPME-HPLC system, the PPy-coated tube was used as a working electrode for the uptake of naproxen. It was found that the extraction efficiency could be significantly enhanced using the constant potential. Plackett-Burman design was employed for screening, to determine the variables significantly affecting the extraction efficiency. The significant factors were then optimized using a Box-Behnken design. The linear range and detection limit (S/N = 3) were 0.5-1000 and 0.07 µg L(-1), respectively. Urine samples were successfully analyzed by the proposed method.


Asunto(s)
Técnicas Electroquímicas/métodos , Naproxeno/orina , Polímeros/química , Pirroles/química , Microextracción en Fase Sólida/métodos , Cromatografía Líquida de Alta Presión/métodos , Voluntarios Sanos , Humanos , Límite de Detección
6.
Anal Chim Acta ; 853: 335-341, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25467477

RESUMEN

We report a new in-tube solid phase microextraction approach named electrochemically controlled in-tube solid phase microextraction (EC in-tube SPME). This approach, which combined electrochemistry and in-tube SPME, led to decrease in total analysis time and increase in sensitivity. At first, pyrrole was elctropolymerized on the inner surface of a stainless steel tube. Then, the polypyrrole (PPy)-coated in-tube SPME was coupled on-line to liquid chromatography (HPLC) to achieve automated in-tube SPME-HPLC analysis. After the completion of EC-in-tube SPME-HPLC setup, the PPy-coated tube was used as working electrode for uptake of diclofenac as target analyte. Extraction ability of the tube in presence and in absence of applied electrical field was investigated. It was found that, under the same extraction conditions, the extraction efficiency could be greatly enhanced by using the constant potential. Important factors are also optimized. The detection limit (S/N=3) and precision were 0.1 µg L(-1) and 4.4%, respectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...