Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Front Microbiol ; 15: 1368377, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38962127

RESUMEN

Microbiomes, comprised of diverse microbial species and viruses, play pivotal roles in human health, environmental processes, and biotechnological applications and interact with each other, their environment, and hosts via ecological interactions. Our understanding of microbiomes is still limited and hampered by their complexity. A concept improving this understanding is systems biology, which focuses on the holistic description of biological systems utilizing experimental and computational methods. An important set of such experimental methods are metaomics methods which analyze microbiomes and output lists of molecular features. These lists of data are integrated, interpreted, and compiled into computational microbiome models, to predict, optimize, and control microbiome behavior. There exists a gap in understanding between microbiologists and modelers/bioinformaticians, stemming from a lack of interdisciplinary knowledge. This knowledge gap hinders the establishment of computational models in microbiome analysis. This review aims to bridge this gap and is tailored for microbiologists, researchers new to microbiome modeling, and bioinformaticians. To achieve this goal, it provides an interdisciplinary overview of microbiome modeling, starting with fundamental knowledge of microbiomes, metaomics methods, common modeling formalisms, and how models facilitate microbiome control. It concludes with guidelines and repositories for modeling. Each section provides entry-level information, example applications, and important references, serving as a valuable resource for comprehending and navigating the complex landscape of microbiome research and modeling.

2.
Methods Mol Biol ; 2820: 99-113, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38941018

RESUMEN

Metaproteomics represents a promising and fast method to analyze the taxonomic and functional composition of biogas plant microbiomes. However, metaproteomics sample preparation and bioinformatics analysis is still challenging due to the sample complexity and contaminants. In this chapter, a tailored workflow including sampling, phenol extraction in a ball mill, amido black protein quantification, FASP digestion, LC-MS/MS measurement as well as bioinformatics and biostatistical data evaluation are here described for the metaproteomics advancements applied to biogas plant samples.


Asunto(s)
Biocombustibles , Biología Computacional , Proteómica , Espectrometría de Masas en Tándem , Flujo de Trabajo , Proteómica/métodos , Biología Computacional/métodos , Biocombustibles/microbiología , Biocombustibles/análisis , Espectrometría de Masas en Tándem/métodos , Cromatografía Liquida/métodos , Plantas/microbiología , Microbiota/genética
3.
Biotechnol Biofuels Bioprod ; 17(1): 66, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750538

RESUMEN

BACKGROUND: Power-to-gas is the pivotal link between electricity and gas infrastructure, enabling the broader integration of renewable energy. Yet, enhancements are necessary for its full potential. In the biomethanation process, transferring H2 into the liquid phase is a rate-limiting step. To address this, we developed a novel tubular foam-bed reactor (TFBR) and investigated its performance at laboratory scale. RESULTS: A non-ionic polymeric surfactant (Pluronic® F-68) at 1.5% w/v was added to the TFBR's culture medium to generate a stabilized liquid foam structure. This increased both the gas-liquid surface area and the bubble retention time. Within the tubing, cells predominantly traveled evenly suspended in the liquid phase or were entrapped in the thin liquid film of bubbles flowing inside the tube. Phase (I) of the experiment focused primarily on mesophilic (40 °C) operation of the tubular reactor, followed by phase (II), when Pluronic® F-68 was added. In phase (II), the TFBR exhibited 6.5-fold increase in biomethane production rate (MPR) to 15.1 ( L CH 4 /L R /d) , with a CH4 concentration exceeding 90% (grid quality), suggesting improved H2 transfer. Transitioning to phase (III) with continuous operation at 55 °C, the MPR reached 29.7 L CH 4 /L R /d while maintaining the grid quality CH4. Despite, reduced gas-liquid solubility and gas-liquid mass transfer at higher temperatures, the twofold increase in MPR compared to phase (II) might be attributed to other factors, i.e., higher metabolic activity of the methanogenic archaea. To assess process robustness for phase (II) conditions, a partial H2 feeding regime (12 h 100% and 12 h 10% of the nominal feeding rate) was implemented. Results demonstrated a resilient MPR of approximately 14.8 L CH 4 /L R /d even with intermittent, low H2 concentration. CONCLUSIONS: Overall, the TFBR's performance plant sets the course for an accelerated introduction of biomethanation technology for the storage of volatile renewable energy. Robust process performance, even under H2 starvation, underscores its reliability. Further steps towards an optimum operation regime and scale-up should be initiated. Additionally, the use of TFBR systems should be considered for biotechnological processes in which gas-liquid mass transfer is a limiting factor for achieving higher reaction rates.

4.
Water Res ; 250: 121020, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38128305

RESUMEN

The yield and productivity of biogas plants depend on the degradation performance of their microbiomes. The spatial separation of the anaerobic digestion (AD) process into a separate hydrolysis and a main fermenter should improve cultivation conditions of the microorganisms involved in the degradation of complex substrates like lignocellulosic biomass (LCB) and, thus, the performance of anaerobic digesters. However, relatively little is known about such two-stage processes. Here, we investigated the process performance of a two-stage agricultural AD over one year, focusing on chemical and technical process parameters and metagenome-centric metaproteomics. Technical and chemical parameters indicated stable operation of the main fermenter but varying conditions for the open hydrolysis fermenter. Matching this, the microbiome in the hydrolysis fermenter has a higher dynamic than in the main fermenter. Metaproteomics-based microbiome analysis revealed a partial separation between early and common steps in carbohydrate degradation and primary fermentation in the hydrolysis fermenter but complex carbohydrate degradation, secondary fermentation, and methanogenesis in the main fermenter. Detailed metagenomics and metaproteomics characterization of the single metagenome-assembled genomes showed that the species focus on specific substrate niches and do not utilize their full genetic potential to degrade, for example, LCB. Overall, it seems that a separation of AD in a hydrolysis and a main fermenter does not improve the cleavage of complex substrates but significantly improves the overall process performance. In contrast, the remaining methanogenic activity in the hydrolysis fermenter may cause methane losses.


Asunto(s)
Reactores Biológicos , Lignina , Anaerobiosis , Lignina/metabolismo , Carbohidratos , Metano/metabolismo
5.
Microorganisms ; 11(10)2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37894070

RESUMEN

The current focus on renewable energy in global policy highlights the importance of methane production from biomass through anaerobic digestion (AD). To improve biomass digestion while ensuring overall process stability, microbiome-based management strategies become more important. In this study, metagenomes and metaproteomes were used for metagenomically assembled genome (MAG)-centric analyses to investigate a full-scale biogas plant consisting of three differentially operated digesters. Microbial communities were analyzed regarding their taxonomic composition, functional potential, as well as functions expressed on the proteome level. Different abundances of genes and enzymes related to the biogas process could be mostly attributed to different process parameters. Individual MAGs exhibiting different abundances in the digesters were studied in detail, and their roles in the hydrolysis, acidogenesis and acetogenesis steps of anaerobic digestion could be assigned. Methanoculleus thermohydrogenotrophicum was an active hydrogenotrophic methanogen in all three digesters, whereas Methanothermobacter wolfeii was more prevalent at higher process temperatures. Further analysis focused on MAGs, which were abundant in all digesters, indicating their potential to ensure biogas process stability. The most prevalent MAG belonged to the class Limnochordia; this MAG was ubiquitous in all three digesters and exhibited activity in numerous pathways related to different steps of AD.

6.
Database (Oxford) ; 20232023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37428679

RESUMEN

The increasing amount and complexity of clinical data require an appropriate way of storing and analyzing those data. Traditional approaches use a tabular structure (relational databases) for storing data and thereby complicate storing and retrieving interlinked data from the clinical domain. Graph databases provide a great solution for this by storing data in a graph as nodes (vertices) that are connected by edges (links). The underlying graph structure can be used for the subsequent data analysis (graph learning). Graph learning consists of two parts: graph representation learning and graph analytics. Graph representation learning aims to reduce high-dimensional input graphs to low-dimensional representations. Then, graph analytics uses the obtained representations for analytical tasks like visualization, classification, link prediction and clustering which can be used to solve domain-specific problems. In this survey, we review current state-of-the-art graph database management systems, graph learning algorithms and a variety of graph applications in the clinical domain. Furthermore, we provide a comprehensive use case for a clearer understanding of complex graph learning algorithms. Graphical abstract.


Asunto(s)
Algoritmos , Sistemas de Administración de Bases de Datos , Bases de Datos Factuales , Análisis por Conglomerados
7.
Expert Rev Proteomics ; 20(4-6): 71-86, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37249060

RESUMEN

INTRODUCTION: Investigating the taxonomic and functional composition of human microbiomes can aid in the understanding of disease etiologies, diagnosis, and therapy monitoring for several diseases, including inflammatory bowel disease or obesity. One method for microbiome monitoring is metaproteomics, which assesses human and microbial proteins and thus enables the study of host-microbiome interactions. This advantage led to increased interest in metaproteome analyses and significant developments to introduce this method into a clinical context. AREAS COVERED: This review summarizes the recent progress from a technical side and an application-related point of view. EXPERT OPINION: Numerous publications imply the massive potential of metaproteomics to impact human health care. However, the key challenges of standardization and validation of experimental and bioinformatic workflows and accurate quantification methods must be overcome.


Asunto(s)
Microbiota , Proteómica , Humanos , Proteómica/métodos , Microbiota/genética , Proteínas Bacterianas/metabolismo , Biología Computacional/métodos , Obesidad
8.
BMC Med Inform Decis Mak ; 22(Suppl 6): 347, 2023 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-36879243

RESUMEN

BACKGROUND: Graph databases enable efficient storage of heterogeneous, highly-interlinked data, such as clinical data. Subsequently, researchers can extract relevant features from these datasets and apply machine learning for diagnosis, biomarker discovery, or understanding pathogenesis. METHODS: To facilitate machine learning and save time for extracting data from the graph database, we developed and optimized Decision Tree Plug-in (DTP) containing 24 procedures to generate and evaluate decision trees directly in the graph database Neo4j on homogeneous and unconnected nodes. RESULTS: Creation of the decision tree for three clinical datasets directly in the graph database from the nodes required between 0.059 and 0.099 s, while calculating the decision tree with the same algorithm in Java from CSV files took 0.085-0.112 s. Furthermore, our approach was faster than the standard decision tree implementations in R (0.62 s) and equal to Python (0.08 s), also using CSV files as input for small datasets. In addition, we have explored the strengths of DTP by evaluating a large dataset (approx. 250,000 instances) to predict patients with diabetes and compared the performance against algorithms generated by state-of-the-art packages in R and Python. By doing so, we have been able to show competitive results on the performance of Neo4j, in terms of quality of predictions as well as time efficiency. Furthermore, we could show that high body-mass index and high blood pressure are the main risk factors for diabetes. CONCLUSION: Overall, our work shows that integrating machine learning into graph databases saves time for additional processes as well as external memory, and could be applied to a variety of use cases, including clinical applications. This provides user with the advantages of high scalability, visualization and complex querying.


Asunto(s)
Algoritmos , Investigación Biomédica , Humanos , Índice de Masa Corporal , Bases de Datos Factuales , Árboles de Decisión
9.
Biotechnol Biofuels Bioprod ; 15(1): 125, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36384582

RESUMEN

BACKGROUND: Biological conversion of the surplus of renewable electricity and carbon dioxide (CO2) from biogas plants to biomethane (CH4) could support energy storage and strengthen the power grid. Biological methanation (BM) is linked closely to the activity of biogas-producing Bacteria and methanogenic Archaea. During reactor operations, the microbiome is often subject to various changes, e.g., substrate limitation or pH-shifts, whereby the microorganisms are challenged to adapt to the new conditions. In this study, various process parameters including pH value, CH4 production rate, conversion yields and final gas composition were monitored for a hydrogenotrophic-adapted microbial community cultivated in a laboratory-scale BM reactor. To investigate the robustness of the BM process regarding power oscillations, the biogas microbiome was exposed to five hydrogen (H2)-feeding regimes lasting several days. RESULTS: Applying various "on-off" H2-feeding regimes, the CH4 production rate recovered quickly, demonstrating a significant resilience of the microbial community. Analyses of the taxonomic composition of the microbiome revealed a high abundance of the bacterial phyla Firmicutes, Bacteroidota and Thermotogota followed by hydrogenotrophic Archaea of the phylum Methanobacteriota. Homo-acetogenic and heterotrophic fermenting Bacteria formed a complex food web with methanogens. The abundance of the methanogenic Archaea roughly doubled during discontinuous H2-feeding, which was related mainly to an increase in acetoclastic Methanothrix species. Results also suggested that Bacteria feeding on methanogens could reduce overall CH4 production. On the other hand, using inactive biomass as a substrate could support the growth of methanogenic Archaea. During the BM process, the additional production of H2 by fermenting Bacteria seemed to support the maintenance of hydrogenotrophic methanogens at non-H2-feeding phases. Besides the elusive role of Methanothrix during the H2-feeding phases, acetate consumption and pH maintenance at the non-feeding phase can be assigned to this species. CONCLUSIONS: Taken together, the high adaptive potential of microbial communities contributes to the robustness of BM processes during discontinuous H2-feeding and supports the commercial use of BM processes for energy storage. Discontinuous feeding strategies could be used to enrich methanogenic Archaea during the establishment of a microbial community for BM. Both findings could contribute to design and improve BM processes from lab to pilot scale.

10.
Int J Mol Sci ; 23(16)2022 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-36012106

RESUMEN

High-calorie diets lead to hepatic steatosis and to the development of non-alcoholic fatty liver disease (NAFLD), which can evolve over many years into the inflammatory form of non-alcoholic steatohepatitis (NASH), posing a risk for the development of hepatocellular carcinoma (HCC). Due to diet and liver alteration, the axis between liver and gut is disturbed, resulting in gut microbiome alterations. Consequently, detecting these gut microbiome alterations represents a promising strategy for early NASH and HCC detection. We analyzed medical parameters and the fecal metaproteome of 19 healthy controls, 32 NASH patients, and 29 HCC patients, targeting the discovery of diagnostic biomarkers. Here, NASH and HCC resulted in increased inflammation status and shifts within the composition of the gut microbiome. An increased abundance of kielin/chordin, E3 ubiquitin ligase, and nucleophosmin 1 represented valuable fecal biomarkers, indicating disease-related changes in the liver. Although a single biomarker failed to separate NASH and HCC, machine learning-based classification algorithms provided an 86% accuracy in distinguishing between controls, NASH, and HCC. Fecal metaproteomics enables early detection of NASH and HCC by providing single biomarkers and machine learning-based metaprotein panels.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Biomarcadores , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/patología , Humanos , Hígado/patología , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/patología , Enfermedad del Hígado Graso no Alcohólico/patología
11.
Microorganisms ; 10(5)2022 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-35630422

RESUMEN

Giant pandas feed almost exclusively on bamboo but miss lignocellulose-degrading genes. Their gut microbiome may contribute to their nutrition; however, the limited access to pandas makes experimentation difficult. In vitro incubation of dung samples is used to infer gut microbiome activity. In pandas, such tests indicated that green leaves are largely fermented to ethanol at neutral pH and yellow pith to lactate at acidic pH. Pandas may feed on either green leaves or yellow pith within the same day, and it is unclear how pH, dung sample, fermentation products and supplied bamboo relate to one another. Additionally, the gut microbiome contribution to solid bamboo digestion must be appropriately assessed. Here, gut microbiomes derived from dung samples with mixed colors were used to ferment green leaves, also by artificially adjusting the initial pH. Gut microbiomes digestion of solid lignocellulose accounted for 30-40% of the detected final fermentation products. At pH 6.5, mixed-color dung samples had the same fermentation profile as green dung samples (mainly alcohols), while adjusting the initial pH to 4.5 resulted in the profile of yellow dung samples (mainly lactate). Metaproteomics confirmed that gut microbiomes attacked hemicellulose, and that the panda's alpha amylase was the predominant enzyme (up to 75%).

12.
Nat Commun ; 12(1): 7305, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34911965

RESUMEN

Metaproteomics has matured into a powerful tool to assess functional interactions in microbial communities. While many metaproteomic workflows are available, the impact of method choice on results remains unclear. Here, we carry out a community-driven, multi-laboratory comparison in metaproteomics: the critical assessment of metaproteome investigation study (CAMPI). Based on well-established workflows, we evaluate the effect of sample preparation, mass spectrometry, and bioinformatic analysis using two samples: a simplified, laboratory-assembled human intestinal model and a human fecal sample. We observe that variability at the peptide level is predominantly due to sample processing workflows, with a smaller contribution of bioinformatic pipelines. These peptide-level differences largely disappear at the protein group level. While differences are observed for predicted community composition, similar functional profiles are obtained across workflows. CAMPI demonstrates the robustness of present-day metaproteomics research, serves as a template for multi-laboratory studies in metaproteomics, and provides publicly available data sets for benchmarking future developments.


Asunto(s)
Bacterias/genética , Proteínas Bacterianas/química , Heces/microbiología , Proteómica/métodos , Adulto , Bacterias/clasificación , Bacterias/aislamiento & purificación , Proteínas Bacterianas/genética , Femenino , Microbioma Gastrointestinal , Humanos , Intestinos/microbiología , Laboratorios , Espectrometría de Masas , Péptidos/química , Flujo de Trabajo
13.
Int J Mol Sci ; 22(20)2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-34681649

RESUMEN

Taxonomic and functional characterization of microbial communities from diverse environments such as the human gut or biogas plants by multi-omics methods plays an ever more important role. Researchers assign all identified genes, transcripts, or proteins to biological pathways to better understand the function of single species and microbial communities. However, due to the versality of microbial metabolism and a still-increasing number of newly biological pathways, linkage to standard pathway maps such as the KEGG central carbon metabolism is often problematic. We successfully implemented and validated a new user-friendly, stand-alone web application, the MPA_Pathway_Tool. It consists of two parts, called 'Pathway-Creator' and 'Pathway-Calculator'. The 'Pathway-Creator' enables an easy set-up of user-defined pathways with specific taxonomic constraints. The 'Pathway-Calculator' automatically maps microbial community data from multiple measurements on selected pathways and visualizes the results. The MPA_Pathway_Tool is implemented in Java and ReactJS.


Asunto(s)
Redes y Vías Metabólicas/fisiología , Interfaz Usuario-Computador , Algoritmos , Biología Computacional/métodos , Humanos , Redes y Vías Metabólicas/genética
14.
Water Res ; 202: 117422, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34280807

RESUMEN

The anaerobic digestion microbiome has been puzzling us since the dawn of molecular methods for mixed microbial community analysis. Monitoring of the anaerobic digestion microbiome can either take place via a non-targeted holistic evaluation of the microbial community through fingerprinting or by targeted monitoring of selected taxa. Here, we compared four different microbial community fingerprinting methods, i.e., amplicon sequencing, metaproteomics, metabolomics and cytomics, in their ability to characterise the full-scale anaerobic digestion microbiome. Cytometric fingerprinting through cytomics reflects a, for anaerobic digestion, novel, single cell-based approach of direct microbial community fingerprinting by flow cytometry. Three different digester types, i.e., sludge digesters, digesters treating agro-industrial waste and dry anaerobic digesters, each reflected different operational parameters. The α-diversity analysis yielded inconsistent results, especially for richness, across the different methods. In contrast, ß-diversity analysis resulted in comparable profiles, even when translated into phyla or functions, with clear separation of the three digester types. In-depth analysis of each method's features i.e., operational taxonomic units, metaproteins, metabolites, and cytometric traits, yielded certain similar features, yet, also some clear differences between the different methods, which was related to the complexity of the anaerobic digestion process. In conclusion, cytometric fingerprinting through flow cytometry is a reliable, fast method for holistic monitoring of the anaerobic digestion microbiome, and the complementary identification of key features through other methods could give rise to a direct interpretation of anaerobic digestion process performance.


Asunto(s)
Reactores Biológicos , Microbiota , Anaerobiosis , Metano , ARN Ribosómico 16S , Aguas del Alcantarillado
15.
Biomolecules ; 11(5)2021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-34066026

RESUMEN

Gut microbiota-mediated inflammation promotes obesity-associated low-grade inflammation, which represents a hallmark of metabolic syndrome. To investigate if lifestyle-induced weight loss (WL) may modulate the gut microbiome composition and its interaction with the host on a functional level, we analyzed the fecal metaproteome of 33 individuals with metabolic syndrome in a longitudinal study before and after lifestyle-induced WL in a well-defined cohort. The 6-month WL intervention resulted in reduced BMI (-13.7%), improved insulin sensitivity (HOMA-IR, -46.1%), and reduced levels of circulating hsCRP (-39.9%), indicating metabolic syndrome reversal. The metaprotein spectra revealed a decrease of human proteins associated with gut inflammation. Taxonomic analysis revealed only minor changes in the bacterial composition with an increase of the families Desulfovibrionaceae, Leptospiraceae, Syntrophomonadaceae, Thermotogaceae and Verrucomicrobiaceae. Yet we detected an increased abundance of microbial metaprotein spectra that suggest an enhanced hydrolysis of complex carbohydrates. Hence, lifestyle-induced WL was associated with reduced gut inflammation and functional changes of human and microbial enzymes for carbohydrate hydrolysis while the taxonomic composition of the gut microbiome remained almost stable. The metaproteomics workflow has proven to be a suitable method for monitoring inflammatory changes in the fecal metaproteome.


Asunto(s)
Bacterias/metabolismo , Heces/microbiología , Microbioma Gastrointestinal , Inflamación/prevención & control , Estilo de Vida , Proteoma/metabolismo , Pérdida de Peso/fisiología , Humanos , Inflamación/inmunología , Inflamación/metabolismo , Resistencia a la Insulina , Estudios Longitudinales , Masculino , Síndrome Metabólico/metabolismo , Síndrome Metabólico/microbiología , Persona de Mediana Edad , Obesidad/metabolismo , Obesidad/microbiología
16.
Microorganisms ; 8(12)2020 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-33348776

RESUMEN

Members of the genera Proteiniphilum and Petrimonas were speculated to represent indicators reflecting process instability within anaerobic digestion (AD) microbiomes. Therefore, Petrimonas mucosa ING2-E5AT was isolated from a biogas reactor sample and sequenced on the PacBio RSII and Illumina MiSeq sequencers. Phylogenetic classification positioned the strain ING2-E5AT in close proximity to Fermentimonas and Proteiniphilum species (family Dysgonomonadaceae). ING2-E5AT encodes a number of genes for glycosyl-hydrolyses (GH) which are organized in Polysaccharide Utilization Loci (PUL) comprising tandem susCD-like genes for a TonB-dependent outer-membrane transporter and a cell surface glycan-binding protein. Different GHs encoded in PUL are involved in pectin degradation, reflecting a pronounced specialization of the ING2-E5AT PUL systems regarding the decomposition of this polysaccharide. Genes encoding enzymes participating in amino acids fermentation were also identified. Fragment recruitments with the ING2-E5AT genome as a template and publicly available metagenomes of AD microbiomes revealed that Petrimonas species are present in 146 out of 257 datasets supporting their importance in AD microbiomes. Metatranscriptome analyses of AD microbiomes uncovered active sugar and amino acid fermentation pathways for Petrimonas species. Likewise, screening of metaproteome datasets demonstrated expression of the Petrimonas PUL-specific component SusC providing further evidence that PUL play a central role for the lifestyle of Petrimonas species.

17.
Bioresour Technol ; 314: 123679, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32629381

RESUMEN

In anaerobic digestion plants (ADs), homogenization of the feed, fermenter content and microbial communities is crucial for efficient and robust biogas production. However, mixing also requires a significant amount of energy. For an 850 m3 agricultural AD equipped with eight sampling ports, we investigated whether different feeding and stirring regimes enable a sufficient homogenization of the microbial community using metaproteomics and terminal restriction fragment length polymorphism (TRFLP) analysis. Systematic comparison of samples taken at the top and the bottom as well as at the rim and the center of the AD using scatter plots and students t-test revealed only a small number of differences in metaproteins, taxonomies and biological processes. Obviously, the applied stirring and feeding conditions were sufficient to largely homogenize the content of the AD.


Asunto(s)
Reactores Biológicos , Microbiota , Anaerobiosis , Biocombustibles , Plantas
18.
Front Microbiol ; 11: 530, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32300339

RESUMEN

The giant panda is known worldwide for having successfully moved to a diet almost exclusively based on bamboo. Provided that no lignocellulose-degrading enzyme was detected in panda's genome, bamboo digestion is believed to depend on its gut microbiome. However, pandas retain the digestive system of a carnivore, with retention times of maximum 12 h. Cultivation of their unique gut microbiome under controlled laboratory conditions may be a valid tool to understand giant pandas' dietary habits, and provide valuable insights about what component of lignocellulose may be metabolized. Here, we collected gut microbiomes from fresh fecal samples of a giant panda (either entirely green or yellow stools) and supplied them with green leaves or yellow pith (i.e., the peeled stem). Microbial community composition was substrate dependent, and resulted in markedly different fermentation profiles, with yellow pith fermented to lactate and green leaves to lactate, acetate and ethanol, the latter to strikingly high concentrations (∼3%, v:v, within 3.5 h). Microbial metaproteins pointed to hemicellulose rather than cellulose degradation. The alpha-amylase from the giant panda (E.C. 3.2.1.1) was the predominant identified metaprotein, particularly in reactors inoculated with pellets derived from fecal samples (up to 60%). Gut microbiomes assemblage was most prominently impacted by the change in substrate (either leaf or pith). Removal of soluble organics from inocula to force lignocellulose degradation significantly enriched Bacteroides (in green leaf) and Escherichia/Shigella (in yellow pith). Overall, different substrates (either leaf or pith) markedly shaped gut microbiome assemblies and fermentation profiles. The biochemical profile of fermentation products may be an underestimated factor contributing to explain the peculiar dietary behavior of giant pandas, and should be implemented in large scale studies together with short-term lab-scale cultivation of gut microbiomes.

19.
Front Microbiol ; 10: 1883, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31474963

RESUMEN

The investigation of microbial proteins by mass spectrometry (metaproteomics) is a key technology for simultaneously assessing the taxonomic composition and the functionality of microbial communities in medical, environmental, and biotechnological applications. We present an improved metaproteomics workflow using an updated sample preparation and a new version of the MetaProteomeAnalyzer software for data analysis. High resolution by multidimensional separation (GeLC, MudPIT) was sacrificed to aim at fast analysis of a broad range of different samples in less than 24 h. The improved workflow generated at least two times as many protein identifications than our previous workflow, and a drastic increase of taxonomic and functional annotations. Improvements of all aspects of the workflow, particularly the speed, are first steps toward potential routine clinical diagnostics (i.e., fecal samples) and analysis of technical and environmental samples. The MetaProteomeAnalyzer is provided to the scientific community as a central remote server solution at www.mpa.ovgu.de.

20.
ISME J ; 13(4): 1004-1018, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30542078

RESUMEN

Petroleum hydrocarbons reach the deep-sea following natural and anthropogenic factors. The process by which they enter deep-sea microbial food webs and impact the biogeochemical cycling of carbon and other elements is unclear. Hydrostatic pressure (HP) is a distinctive parameter of the deep sea, although rarely investigated. Whether HP alone affects the assembly and activity of oil-degrading communities remains to be resolved. Here we have demonstrated that hydrocarbon degradation in deep-sea microbial communities is lower at native HP (10 MPa, about 1000 m below sea surface level) than at ambient pressure. In long-term enrichments, increased HP selectively inhibited obligate hydrocarbon-degraders and downregulated the expression of beta-oxidation-related proteins (i.e., the main hydrocarbon-degradation pathway) resulting in low cell growth and CO2 production. Short-term experiments with HP-adapted synthetic communities confirmed this data, revealing a HP-dependent accumulation of citrate and dihydroxyacetone. Citrate accumulation suggests rates of aerobic oxidation of fatty acids in the TCA cycle were reduced. Dihydroxyacetone is connected to citrate through glycerol metabolism and glycolysis, both upregulated with increased HP. High degradation rates by obligate hydrocarbon-degraders may thus be unfavourable at increased HP, explaining their selective suppression. Through lab-scale cultivation, the present study is the first to highlight a link between impaired cell metabolism and microbial community assembly in hydrocarbon degradation at high HP. Overall, this data indicate that hydrocarbons fate differs substantially in surface waters as compared to deep-sea environments, with in situ low temperature and limited nutrients availability expected to further prolong hydrocarbons persistence at deep sea.


Asunto(s)
Bacterias/metabolismo , Ciclo del Ácido Cítrico , Sedimentos Geológicos/microbiología , Hidrocarburos/metabolismo , Microbiota , Petróleo/metabolismo , Presión Hidrostática , Agua de Mar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...