Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Astrobiology ; 21(8): 924-939, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34406808

RESUMEN

Banded iron formations (BIFs) were deposited before and concurrent with the Great Oxidation Event at ∼2.33 Ga. They provide useful archives that document the transformation of the Precambrian hydrosphere from anoxic to progressively oxygenated conditions. Their formation involves removal of oceanic Fe by either inorganic or biologically promoted Fe2+ oxidation, or both. To evaluate depositional settings, elemental sources that affect seawater chemistry, and oxidation pathways, we present the first combined highly siderophile element (HSE) and Fe-Os isotope study for the ∼2.7 Ga Temagami BIF, Abitibi Greenstone Belt, Ontario (Canada). HSE abundances and 187Os/188Os ratios show no systematic variation between alternating magnetite and (meta)chert bands of the Temagami BIF. Whereas HSE concentrations mostly resemble modern crustal values, present-day 187Os/188Os ratios range from ∼0.17 to ∼10.8. Magnetite samples define a regression line corresponding to an age of 2661 ± 126 Ma. A chondrite-like 187Os/188Os initial value is in agreement with earlier studies on Neoarchean marine sediments and is thought to reflect seawater composition, which, unlike modern oceans, is dominated by mantle-like 187Os inventory most likely derived from deep-sea hydrothermal vents. Our δ56Fe data vary from about +0.6‰ to +0.9‰ and define a sawtooth-like pattern between alternating magnetite and (meta)chert layers. Partial oxidation of hydrothermally sourced Fe(II) and a lack of microbially mediated dissimilatory iron reduction provide the most plausible explanation for the positive δ56Fe values. Notably, our δ56Fe data for Temagami are in accord with trends defined by literature results for other Algoma-type BIFs that were deposited throughout the Archean.


Asunto(s)
Sedimentos Geológicos , Hierro , Hierro/análisis , Isótopos , Océanos y Mares , Agua de Mar
2.
Nat Commun ; 8: 15702, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28569769

RESUMEN

Molten I-type cosmic spherules formed by heating, oxidation and melting of extraterrestrial Fe,Ni metal alloys. The entire oxygen in these spherules sources from the atmosphere. Therefore, I-type cosmic spherules are suitable tracers for the isotopic composition of the upper atmosphere at altitudes between 80 and 115 km. Here we present data on I-type cosmic spherules collected in Antarctica. Their composition is compared with the composition of tropospheric O2. Our data suggest that the Earth's atmospheric O2 is isotopically homogenous up to the thermosphere. This makes fossil I-type micrometeorites ideal proxies for ancient atmospheric CO2 levels.

3.
Science ; 322(5904): 1050; author reply 1050, 2008 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-19008430

RESUMEN

Sunshine et al. (Reports, 25 April 2008, p. 514) reported that certain asteroids contain 30 +/- 10 volume percent calcium- and aluminum-rich inclusions (CAIs). We contend that the amount of CAIs in CV chondrites is two to three times as low as the 10 volume percent assumed by the authors; thus, we question whether the CAI-rich bodies they studied are indeed older than known asteroids or formed before the injection of (26)Al into the solar nebula.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA