Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
RSC Med Chem ; 15(6): 2063-2079, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38911147

RESUMEN

Synthetic cannabinoid receptor agonists (SCRAs) comprise the second largest class of new psychoactive substances (NPS), and typically α-amino acid moieties are incorporated as part of their design. Limited investigation has been performed into elucidating structure-activity relationships around commonly used α-amino acid-derived head groups, mainly with valine and tert-leucine-derived compounds previously described. As such, proactive synthesis, characterisation and pharmacological evaluation were performed to explore structure-activity relationships of 15 α-amino acid derivatives, with both the natural isomers and their enantiomers at CB1 and CB2 investigated using a fluorescence-based membrane potential assay. This library was based around the detected SCRAs MPP-5F-PICA, MMB-5F-PICA, and MDMB-5F-PICA, with the latter showing significant receptor activation at CB1 (pEC50 = 8.34 ± 0.05 M; E max = 108 ± 3%) and CB2 (pEC50 = 8.13 ± 0.07 M; E max = 99 ± 2%). Most valine and leucine derivatives were potent and efficacious SCRAs, while smaller derivatives generally showed reduced activity at CB1 and CB2, and larger derivatives also showed reduced activity. SAR trends observed were rationalised via in silico induced fit docking. Overall, while natural enantiomers showed equipotent or greater activity than the unnatural isomers in most cases, this was not universal. As such, a number of these compounds should be monitored as emerging NPS, and various substituents described herein.

2.
ACS Chem Neurosci ; 15(11): 2160-2181, 2024 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-38766866

RESUMEN

Synthetic cannabinoid receptor agonists (SCRAs) are a growing class of new psychoactive substances (NPS) commonly derived from an N-alkylated indole, indazole, or 7-azaindole scaffold. Diversification of this core (at the 3-position) with amide-linked pendant amino acid groups and modular N-alkylation (of the indole/indazole/7-azaindole core) ensures that novel SCRAs continue to enter the illicit drug market rapidly. In response to the large number of SCRAs that have been detected, pharmacological evaluation of this NPS class has become increasingly common. Adamantane-derived SCRAs have consistently appeared throughout the market since 2011, and as such, a systematic set of these derivatives was synthesized and pharmacologically evaluated. Deuterated and fluorinated adamantane derivatives were prepared to evaluate typical hydrogen bioisosteres, as well as evaluation of the newly detected AFUBIATA.


Asunto(s)
Agonistas de Receptores de Cannabinoides , Halogenación , Indazoles , Indoles , Agonistas de Receptores de Cannabinoides/farmacología , Agonistas de Receptores de Cannabinoides/química , Agonistas de Receptores de Cannabinoides/síntesis química , Relación Estructura-Actividad , Animales , Indazoles/farmacología , Indazoles/química , Indazoles/síntesis química , Humanos , Indoles/farmacología , Indoles/química , Adamantano/análogos & derivados , Adamantano/farmacología , Adamantano/química , Deuterio , Ratones , Valina/análogos & derivados
3.
Microbiol Spectr ; 12(6): e0012124, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38695556

RESUMEN

Candidiasis places a significant burden on human health and can range from common superficial vulvovaginal and oral infections to invasive diseases with high mortality. The most common Candida species implicated in human disease is Candida albicans, but other species like Candida glabrata are emerging. The use of azole antifungals for treatment is limited by increasing rates of resistance. This study explores repositioning bisphosphonates, which are traditionally used for osteoporosis, as antifungal synergists that can improve and revitalize the use of azoles. Risedronate, alendronate, and zoledronate (ZOL) were tested against isolates from six different species of Candida, and ZOL produced moderate antifungal activity and strong synergy with azoles like fluconazole (FLC), particularly in C. glabrata. FLC:ZOL combinations had increased fungicidal and antibiofilm activity compared to either drug alone, and the combination prevented the development of antifungal resistance. Mechanistic investigations demonstrated that the synergy was mediated by the depletion of squalene, resulting in the inhibition of ergosterol biosynthesis and a compromised membrane structure. In C. glabrata, synergy compromised the function of membrane-bound multidrug transporters and caused an accumulation of reactive oxygen species, which may account for its acute sensitivity to FLC:ZOL. The efficacy of FLC:ZOL in vivo was confirmed in a Galleria mellonella infection model, where combinations improved the survival of larvae infected with C. albicans and C. glabrata to a greater extent than monotherapy with FLC or ZOL, and at reduced dosages. These findings demonstrate that bisphosphonates and azoles are a promising new combination therapy for the treatment of topical candidiasis. IMPORTANCE: Candida is a common and often very serious opportunistic fungal pathogen. Invasive candidiasis is a prevalent cause of nosocomial infections with a high mortality rate, and mucocutaneous infections significantly impact the quality of life of millions of patients a year. These infections pose substantial clinical challenges, particularly as the currently available antifungal treatment options are limited in efficacy and often toxic. Azoles are a mainstay of antifungal therapy and work by targeting the biosynthesis of ergosterol. However, there are rising rates of acquired azole resistance in various Candida species, and some species are considered intrinsically resistant to most azoles. Our research demonstrates the promising therapeutic potential of synergistically enhancing azoles with non-toxic, FDA-approved bisphosphonates. Repurposing bisphosphonates as antifungal synergists can bypass much of the drug development pipeline and accelerate the translation of azole-bisphosphonate combination therapy.


Asunto(s)
Antifúngicos , Azoles , Candida , Difosfonatos , Farmacorresistencia Fúngica , Sinergismo Farmacológico , Pruebas de Sensibilidad Microbiana , Antifúngicos/farmacología , Azoles/farmacología , Humanos , Difosfonatos/farmacología , Candida/efectos de los fármacos , Animales , Farmacorresistencia Fúngica/efectos de los fármacos , Candidiasis/tratamiento farmacológico , Candidiasis/microbiología , Fluconazol/farmacología , Biopelículas/efectos de los fármacos , Candida glabrata/efectos de los fármacos , Candida albicans/efectos de los fármacos
4.
ACS Chem Neurosci ; 15(9): 1787-1812, 2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38597712

RESUMEN

ADB-HEXINACA has been recently reported as a synthetic cannabinoid receptor agonist (SCRA), one of the largest classes of new psychoactive substances (NPSs). This compound marks the entry of the n-hexyl tail group into the SCRA landscape, which has continued in the market with recent, newly detected SCRAs. As such, a proactive characterization campaign was undertaken, including the synthesis, characterization, and pharmacological evaluation of ADB-HEXINACA and a library of 41 closely related analogues. Two in vitro functional assays were employed to assess activity at CB1 and CB2 cannabinoid receptors, measuring Gßγ-coupled agonism through a fluorescence-based membrane potential assay (MPA) and ß-arrestin 2 (ßarr2) recruitment via a live cell-based nanoluciferase complementation reporter assay. ADB-HEXINACA was a potent and efficacious CB1 agonist (CB1 MPA pEC50 = 7.87 ± 0.12 M; Emax = 124 ± 5%; ßarr2 pEC50 = 8.27 ± 0.14 M; Emax = 793 ± 42.5), as were most compounds assessed. Isolation of the heterocyclic core and alkyl tails allowed for the comprehensive characterization of structure-activity relationships in this compound class, which were rationalized in silico via induced fit docking experiments. Overall, most compounds assessed are possibly emerging NPSs.


Asunto(s)
Agonistas de Receptores de Cannabinoides , Receptor Cannabinoide CB1 , Receptor Cannabinoide CB2 , Agonistas de Receptores de Cannabinoides/farmacología , Agonistas de Receptores de Cannabinoides/síntesis química , Humanos , Receptor Cannabinoide CB1/agonistas , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/agonistas , Receptor Cannabinoide CB2/metabolismo , Células HEK293 , Relación Estructura-Actividad , Animales
5.
ACS Chem Neurosci ; 14(16): 2902-2921, 2023 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-37499194

RESUMEN

Several classes of cannabinoid receptor type 2 radioligands have been evaluated for imaging of neuroinflammation, with successful clinical translation yet to take place. Here we describe the synthesis of fluorinated 5-azaindoles and pharmacological characterization and in vivo evaluation of 18F-radiolabeled analogues. [18F]2 (hCB2 Ki = 96.5 nM) and [18F]9 (hCB2 Ki = 7.7 nM) were prepared using Cu-mediated 18F-fluorination with non-decay-corrected radiochemical yields of 15 ± 6% and 18 ± 2% over 85 and 80 min, respectively, with high radiochemical purities (>97%) and molar activities (140-416 GBq/µmol). In PET imaging studies in rats, both [18F]2 and [18F]9 demonstrated specific binding in CB2-rich spleen after pretreatment with CB2-specific GW405833. Moreover, [18F]9 exhibited higher brain uptake at later time points in a murine model of neuroinflammation compared with a healthy control group. The results suggest further evaluation of azaindole based CB2 radioligands is warranted in other neuroinflammation models.


Asunto(s)
Enfermedades Neuroinflamatorias , Tomografía de Emisión de Positrones , Ratas , Ratones , Animales , Tomografía de Emisión de Positrones/métodos , Indoles/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Radiofármacos , Radioisótopos de Flúor/metabolismo , Receptor Cannabinoide CB2/metabolismo
6.
Int J Mol Sci ; 24(11)2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37298286

RESUMEN

T-cell recognition of antigens is complex, leading to biochemical and cellular events that impart both specific and targeted immune responses. The end result is an array of cytokines that facilitate the direction and intensity of the immune reaction-such as T-cell proliferation, differentiation, macrophage activation, and B-cell isotype switching-all of which may be necessary and appropriate to eliminate the antigen and induce adaptive immunity. Using in silico docking to identify small molecules that putatively bind to the T-cell Cß-FG loop, we have shown in vitro using an antigen presentation assay that T-cell signalling is altered. The idea of modulating T-cell signalling independently of antigens by directly targeting the FG loop is novel and warrants further study.


Asunto(s)
Transducción de Señal , Linfocitos T , Receptores de Antígenos de Linfocitos T alfa-beta , Receptores de Antígenos/metabolismo , Citocinas/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo
7.
J Biochem ; 174(2): 143-164, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37039772

RESUMEN

Here, we show that 3,5-bis[(1E)-2-(2,6-dichlorophenyl)ethenyl]-1H-pyrazole 2l depolymerizes microtubules and reduces the number of growing tips of microtubules. The fluorescence recovery after photobleaching experiment in live MCF-7 cells showed that pyrazole 2l suppresses spindle microtubule dynamics. Further, the compound inhibits chromosome movements, activates the spindle assembly checkpoint and blocks mitosis in MCF-7 cells. Pyrazole 2l treatment induced cell death in a variety of pathways. Pyrazole 2l induces cell death independent of BubR1 and p53 levels of MCF-7 cells upon microtubule depolymerization. Further, pyrazole 2l increases the interaction between NF-κB and microtubules and enhances the nuclear localization of NF-κB at its half-maximal proliferation inhibitory concentration while a high concentration of the compound reduced the nuclear localization of NF-κB. Interestingly, the compound exerted significantly stronger antiproliferative effects in cancerous cells than in non-cancerous cells. The results indicated that pyrazole 2l inhibits mitosis by targeting microtubules, induces several types of cell death stimuli and suggests its potential as a lead in developing anticancer agent.


Asunto(s)
Tubulina (Proteína) , Proteína p53 Supresora de Tumor , Humanos , Proteína p53 Supresora de Tumor/metabolismo , Tubulina (Proteína)/metabolismo , FN-kappa B/metabolismo , Microtúbulos/metabolismo , Mitosis , Muerte Celular , Pirazoles/farmacología , Pirazoles/metabolismo , Células HeLa
8.
iScience ; 26(2): 105988, 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36818308

RESUMEN

Synthetic anion transporters show potential in treating life-threatening diseases like cystic fibrosis and cancer. However, with increasingly complex transporter architectures designed to control anion binding and transport, it is important to consider solubility and deliverability during transporter design. The fluorination of synthetic anion transporters has been shown to tune the transporter lipophilicity, transport rates, and binding strength. In this work, we expand on our previously reported tetrapodal (thio)urea transporters with a series of fluorinated tetrapodal anion transporters. The effects of fluorination on tuning the lipophilicity, solubility, deliverability, and anion transport selectivity of the tetrapodal scaffold were investigated using anion-binding and transport assays. The primary mode of anion transport was H+/X- cotransport, with the most fluorinated tetrathiourea (8) displaying the highest transport activity in the 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS) assay. Intriguingly, inversion of the transmembrane Cl- vs NO3 - transport selectivity compared with previously reported tripodal (thio)urea transporters was observed under a modified HPTS assay.

9.
ACS Chem Neurosci ; 14(1): 35-52, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36530139

RESUMEN

Over 200 synthetic cannabinoid receptor agonists (SCRAs) have been identified as new psychoactive substances. Effective monitoring and characterization of SCRAs are hindered by the rapid pace of structural evolution. Ahead of possible appearance on the illicit drug market, new SCRAs were synthesized to complete a systematic library of cumyl-indole- (e.g., CUMYL-CPrMICA, CUMYL-CPMICA) and cumyl-indazole-carboxamides (e.g., CUMYL-CPrMINACA, CUMYL-CPMINACA), encompassing butyl, pentyl, cyclopropylmethyl, cyclobutylmethyl, cyclopentylmethyl, and cyclohexylmethyl tails. Comprehensive pharmacological characterization was performed with three assay formats, monitoring the recruitment of either wild-type or C-terminally truncated (ßarr2d366) ß-arrestin2 to the activated cannabinoid 1 receptor (CB1) or monitoring Gßγ-mediated membrane hyperpolarization. Altered compound characterization was observed when comparing derived potency (EC50) and efficacy (Emax) values from both assays monitoring the same or a different signaling event, whereas ranges and ranking orders were similar. Structure-activity relationships (SAR) were assessed in threefold, resulting in the identification of the pendant tail as a critical pharmacophore, with the optimal chain length for CB1 activation approximating an n-pentyl (e.g., cyclopentylmethyl or cyclohexylmethyl tail). The activity of the SCRAs encompassing cyclic tails decreased with decreasing number of carbons forming the cyclic moiety, with CUMYL-CPrMICA showing the least CB1 activity in all assay formats. The SARs were rationalized via molecular docking, demonstrating the importance of the optimal steric contribution of the hydrophobic tail. While SAR conclusions remained largely unchanged, the differential compound characterization by both similar and different assay designs emphasizes the importance of detailing specific assay characteristics to allow adequate interpretation of potencies and efficacies.


Asunto(s)
Cannabinoides , Simulación del Acoplamiento Molecular , Cannabinoides/farmacología , Cannabinoides/química , Agonistas de Receptores de Cannabinoides/farmacología , Agonistas de Receptores de Cannabinoides/química , Indazoles/farmacología , Indazoles/química , Receptor Cannabinoide CB1
10.
Palliat Support Care ; : 1-13, 2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36503650

RESUMEN

CONTEXT: The demand of palliative care is increasing due to the aging population and treatment hesitancy or intentional avoidance compromises symptom management. OBJECTIVES: To identify patient beliefs associated with medication hesitancy by using the theory of planned behavior (TPB) namely, attitudes, subjective norms, behavioral intention, and perceived behavioral control associated with medication hesitancy or intentional noncompliance by avoidance. METHODS: The Preferred Reporting Items for Systematic Reviews and Meta-Analysis guideline was followed to conduct a systematic literature search involving the CINAHL, Embase, MEDLINE, and PsycINFO databases from inception until March 2022. Hand-searched articles from reference lists and gray literature were included. Thematic analysis was conducted on qualitative data and triangulated with quantitative data. RESULTS: About 554 articles were retrieved from the literature search and 17 articles were included based on the eligibility criteria. Three subthemes that were identified under TPB constructs were attitude: negative attitude toward medications, passive attitude toward illness and inaccurate information about disease or medication; one subtheme was identified under subjective norms: perceived negative opinions from others; and one subtheme was identified under perceived behavioral control: perception of manageable symptoms. Quantitative data provided triangulation of qualitative findings related to fear of addiction and side effects, feelings of hopelessness, unclear direction and information, social stigma, endurable symptoms, and illness as determinants for medication avoidance. SIGNIFICANCE OF RESULTS: This systematic review highlighted some patient beliefs related to medication hesitancy or avoidance. Clinicians should take patient beliefs and concerns into consideration when creating treatment regimens for people receiving palliative care to optimize medication adherence and the quality of care.

11.
RSC Med Chem ; 13(11): 1276-1299, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36439977

RESUMEN

Antibacterial resistance is a prominent issue with monotherapy often leading to treatment failure in serious infections. Many mechanisms can lead to antibacterial resistance including deactivation of antibacterial agents by bacterial enzymes. Enzymatic drug modification confers resistance to ß-lactams, aminoglycosides, chloramphenicol, macrolides, isoniazid, rifamycins, fosfomycin and lincosamides. Novel enzyme inhibitor adjuvants have been developed in an attempt to overcome resistance to these agents, only a few of which have so far reached the market. This review discusses the different enzymatic processes that lead to deactivation of antibacterial agents and provides an update on the current and potential enzyme inhibitors that may restore bacterial susceptibility.

12.
Front Psychiatry ; 13: 1010501, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36245876

RESUMEN

Synthetic cannabinoid receptor agonists (SCRAs) continue to make up a significant portion new psychoactive substances (NPS) detected and seized worldwide. Due to their often potent activation of central cannabinoid receptors in vivo, use of SCRAs can result in severe intoxication, in addition to other adverse health effects. Recent detections of AB-4CN-BUTICA, MMB-4CN-BUTINACA, MDMB-4F-BUTICA and MDMB-4F-BUTINACA mark a continuation in the appearance of SCRAs bearing novel tail substituents. The proactive characterization campaign described here has facilitated the detection of several new SCRAs in toxicological case work. Here we detail the synthesis, characterization, and pharmacological evaluation of recently detected SCRAs, as well as a systematic library of 32 compounds bearing head, tail, and core group combinations likely to appear in future. In vitro radioligand binding assays revealed most compounds showed moderate to high affinity at both CB1 (pK i = < 5 to 8.89 ± 0.09 M) and CB2 (pK i = 5.49 ± 0.03 to 9.92 ± 0.09 M) receptors. In vitro functional evaluation using a fluorescence-based membrane potential assay showed that most compounds were sub-micromolar to sub-nanomolar agonists at CB1 (pEC50 = < 5 to 9.48 ± 0.14 M) and CB2 (pEC50 = 5.92 ± 0.16 to 8.64 ± 0.15 M) receptors. An in silico receptor-ligand docking approach was utilized to rationalize binding trends for CB2 with respect to the tail substituent, and indicated that rigidity in this region (i.e., 4-cyanobutyl) was detrimental to affinity.

13.
Molecules ; 27(20)2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36296585

RESUMEN

Multi-drug resistance is increasing in the pathogenic bacterium S. pneumoniae, which is mainly responsible for meningitis and community-acquired pneumonia (CAP), highlighting the need for new anti-pneumococcal agents. We have identified a potential anti-pneumococcal agent, enol 3, which acts by hindering the cell division process by perturbing Z-ring dynamics inside the cell. Enol 3 was also shown to inhibit FtsZ polymerization and induce its aggregation in vitro but does not affect the activity of tubulin and alkaline phosphatase. Docking studies show that 3 binds near the T7 loop, which is the catalytic site of FtsZ. Similar effects on Z-ring and FtsZ assembly were observed in B. subtilis, indicating that 3 could be a broad-spectrum anti-bacterial agent useful in targeting Gram-positive bacteria. In conclusion, compound 3 shows strong anti-pneumococcal activity, prompting further pre-clinical studies to explore its potential.


Asunto(s)
Proteínas Bacterianas , Proteínas del Citoesqueleto , Proteínas del Citoesqueleto/metabolismo , Proteínas Bacterianas/metabolismo , Tubulina (Proteína)/metabolismo , Fosfatasa Alcalina/metabolismo , Antibacterianos/farmacología , Antibacterianos/metabolismo , Bacillus subtilis
14.
RSC Adv ; 12(25): 15670-15684, 2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35685708

RESUMEN

The pharmaceutical agent theophylline (THEO) is primarily used as a bronchodilator and is commercially available in both tablet and liquid dosage forms. THEO is highly hygroscopic, reducing its stability, overall shelf-life, and therefore usage as a drug. THEO and dicarboxylic acid cocrystals were designed by Trask et al. in an attempt to decrease the hygroscopic behaviour of THEO; cocrystallisation of THEO with malonic acid (MA) did not improve the hygroscopic stability of THEO in simulated atmospheric humidity testing. The current study employed high-resolution X-ray crystallography, and Density Functional Theory (DFT) calculations to examine the electron density distribution (EDD) changes between the cocrystal and its individual components. The EED changes identified the reasons why the THEO:MA cocrystal did not alter the hygroscopic profile of THEO. The cocrystal was equally porous, with atomic packing factors (APF) similar to those of THEO 0.73 vs. 0.71, respectively. The THEO:MA (1) cocrystal structure is held together by an array of interactions; a heterogeneous synthon between the imidazole and a carboxylic fragment stabilising the asymmetric unit, a pyrimidine-imidazole homosynthon, and an aromatic cycle stack between two THEO moieties have been identified, providing 9.7-12.9 kJ mol-1 of stability. These factors did not change the overall relative stability of the cocrystal relative to its individual THEO and MA components, as shown by cocrystal (1) and THEO being equally stable, with calculated lattice energies within 2.5 kJ mol-1 of one other. The hydrogen bond analysis and fragmented atomic charge analysis highlighted that the formation of (1) combined both the EDD of THEO and MA with no net chemical change, suggesting that the reverse reaction - (1) back to THEO and MA - is of equal potential, ultimately producing THEO hydrate formation, in agreement with the work of Trask et al. These results highlight that a review of the EDD change associated with a chemical reaction can aid in understanding cocrystal design. In addition, they indicate that cocrystal design requires further investigation before becoming a reliable process, with particular emphasis on identifying the appropriate balance of synthon engineering, weak interactions, and packing dynamics.

15.
Phys Chem Chem Phys ; 24(21): 13015-13025, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35583143

RESUMEN

This study investigated the effect of 2-methylimidazole (2-MIM) addition on the fluorescence of ethyl-7-hydroxy-2-oxo-2H-chromene-3-carboxylate using low-cost density functional theory (DFT) and Time-Dependent DFT calculations on single crystal X-ray geometries of ethyl-7-hydroxy-2-oxo-2H-chromene-3-carboxylate hydrate (1), 2-MIM (2), and the 1 : 1 co-crystal of (1) and (2), (3). At low concentrations (1 : 1-1 : 10) of 2-MIM, the fluorophore shows a decrease in the fluorescence intensity, but at higher concentrations (above 1 : 10) the fluorescence excitation maximum shifted from 354 nm to 405 nm, with a significant emission intensity increase. The changed excitation and emission profile at high concentrations is due to the deprotonation of the coumarin's phenolic group, which was confirmed by the increased shielding of the aromatic protons in the titration 1H NMR spectra. The experimental fluorescence data between the 1 : 1 and 1 : 10 ratios agreed with the theoretical fluorescence data, with a redshift and decreased intensity when comparing (1) and (3). The data indicated that combining the fluorophore with 2-MIM increased levels of vibronic coupling between 2-MIM and the fluorophore decreasing de-excitation efficiency. These increased vibronic changes were due to charge transfer between the fluorophore and 2-MIM in (3). The subtle movement of the proton, H(5) toward N(2') (0.07 Å) caused a significant decrease in fluorescence due to electron density distribution (EDD) changes. This was identified by comparison of the EDD in the excited (S1) and ground (S0) states plotted as an isosurface of EDD difference. For the higher concentrations, an alternative excitation pathway was explored by modifying the crystal geometry of (3) based on 1H NMR spectroscopy data to resemble excitoplexes. Theses excitoplex geometries reflected the fluorescence profile of the fluorophore with high concentrations of 2-MIM; there were dramatic changes in the theoretical fluorescence pathway, which was 100% vibronic coupling compared to 15.31% in the free fluorophore. At this concentration, the de-excitation pathway causes remodelling of the lactone ring via stretching/breaking the CO bond in the S1 causing increased fluorescence by movement of the transition dipole moment. These results reflect previous studies, but the methods used are less experimentally and computationally expensive. This study is among the first to explain charge transfer fluorescence using crystalline geometries. This study will be of interest to the fields of crystal engineering and fluorescence spectroscopy.


Asunto(s)
Protones , Teoría Cuántica , Colorantes Fluorescentes , Imidazoles , Umbeliferonas , Difracción de Rayos X
16.
ACS Chem Neurosci ; 13(9): 1395-1409, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35442021

RESUMEN

Synthetic cannabinoid receptor agonists (SCRAs) are a large and growing class of new psychoactive substances (NPSs). Two recently identified compounds, MEPIRAPIM and 5F-BEPIRAPIM (NNL-2), have not been confirmed as agonists of either cannabinoid receptor subtype but share structural similarities with both SCRAs and a class of T-type calcium channel (CaV3) inhibitors under development as new treatments for epilepsy and pain. In this study, MEPIRAPIM and 5F-BEPIRAPIM and 10 systematic analogues were synthesized, analytically characterized, and pharmacologically evaluated using in vitro cannabinoid receptor and CaV3 assays. Several compounds showed micromolar affinities for CB1 and/or CB2, with several functioning as low potency agonists of CB1 and CB2 in a membrane potential assay. 5F-BEPIRAPIM and four other derivatives were identified as potential CaV3 inhibitors through a functional calcium flux assay (>70% inhibition), which was further confirmed using whole-cell patch-clamp electrophysiology. Additionally, MEPIRAPIM and 5F-BEPIRAPIM were evaluated in vivo using a cannabimimetic mouse model. Despite detections of MEPIRAPIM and 5F-BEPIRAPIM in the NPS market, only the highest MEPIRAPIM dose (30 mg/kg) elicited a mild hypothermic response in mice, with no hypothermia observed for 5F-BEPIRAPIM, suggesting minimal central CB1 receptor activity.


Asunto(s)
Canales de Calcio Tipo T , Cannabinoides , Hipotermia , Animales , Agonistas de Receptores de Cannabinoides/farmacología , Cannabinoides/química , Cannabinoides/farmacología , Indazoles/farmacología , Ratones , Receptor Cannabinoide CB1 , Receptor Cannabinoide CB2 , Receptores de Cannabinoides
17.
ACS Chem Neurosci ; 13(8): 1281-1295, 2022 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-35404067

RESUMEN

Synthetic cannabinoid receptor agonists (SCRAs) are a diverse class of new psychoactive substances (NPS). They commonly comprise N-alkylated indole, indazole, or 7-azaindole scaffolds with amide-linked pendant amino acid groups. To explore the contribution of the amino acid side chain to the cannabinoid pharmacology of SCRA NPS, a systematic library of side chain-modified SCRAs was prepared based on the recent detections of amino acid derivatives 17 (5F-AB-PINACA), 18 (5F-ADB-PINACA), 15 (PX-1), 19 (PX-2), and 20 (NNL-1). In vitro binding affinities and functional activities at cannabinoid type 1 and 2 receptors (CB1 and CB2, respectively) were determined for all the library members using radioligand competition experiments and a fluorescence-based membrane potential assay. Binding affinities and functional activities varied widely across compounds (Ki = 0.32 to >10 000 nM, EC50 = 0.24-1259 nM), with several clear structure-activity relationships (SARs) emerging. Affinity and potency at CB1 changed as a function of the heterocyclic core (indazole > indole > 7-azaindole) and the pendant amino acid side chain (tert-butyl > iso-propyl > iso-butyl > benzyl > ethyl > methyl > hydrogen). Ensemble docking at CB1 revealed a clear steric basis for observed SAR trends. Interestingly, although 15 (PX-1) and 19 (PX-2) have been detected in recreational drug markets, they failed to induce centrally CB1-mediated effects (e.g., hypothermia) in mice using radiobiotelemetry. Together, these data provide insights regarding structural contributions to the cannabimimetic profiles of 17 (5F-AB-PINACA), 18 (5F-ADB-PINACA), 15 (PX-1), 19 (PX-2), 20 (NNL-1), and other SCRA NPS.


Asunto(s)
Agonistas de Receptores de Cannabinoides , Cannabinoides , Animales , Agonistas de Receptores de Cannabinoides/química , Agonistas de Receptores de Cannabinoides/farmacología , Cannabinoides/química , Fármacos del Sistema Nervioso Central , Indazoles/química , Indazoles/farmacología , Ratones , Receptor Cannabinoide CB1 , Receptor Cannabinoide CB2 , Receptores de Cannabinoides , Valina/análogos & derivados
18.
RSC Med Chem ; 13(2): 156-174, 2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35308023

RESUMEN

Synthetic cannabinoid receptor agonists (SCRAs) remain one the most prevalent classes of new psychoactive substances (NPS) worldwide, and examples are generally poorly characterised at the time of first detection. We have synthesised a systematic library of amino acid-derived indole-, indazole-, and 7-azaindole-3-carboxamides related to recently detected drugs ADB-BUTINACA, APP-BUTINACA and ADB-P7AICA, and characterised these ligands for in vitro binding and agonist activity at cannabinoid receptor subtypes 1 and 2 (CB1 and CB2), and in vivo cannabimimetic activity. All compounds showed high affinity for CB1 (K i 0.299-538 nM) and most at CB2 (K i = 0.912-2190 nM), and most functioned as high efficacy agonists of CB1 and CB2 in a fluorescence-based membrane potential assay and a ßarr2 recruitment assay (NanoBiT®), with some compounds being partial agonists in the NanoBiT® assay. Key structure-activity relationships (SARs) were identified for CB1/CB2 binding and CB1/CB2 functional activities; (1) for a given core, affinities and potencies for tert-leucinamides (ADB-) > valinamides (AB-) ≫ phenylalaninamides (APP-); (2) for a given amino acid side-chain, affinities and potencies for indazoles > indoles ≫ 7-azaindoles. Radiobiotelemetric evaluation of ADB-BUTINACA, APP-BUTINACA and ADB-P7AICA in mice demonstrated that ADB-BUTINACA and ADB-P7AICA were cannabimimetic at 0.1 mg kg-1 and 10 mg kg-1 doses, respectively, as measured by pronounced decreases in core body temperature. APP-BUTINACA failed to elicit any hypothermic response up to the maximally tested 10 mg kg-1 dose, yielding an in vivo potency ranking of ADB-BUTINACA > ADB-P7AICA > APP-BUTINACA.

19.
Life (Basel) ; 12(1)2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-35054520

RESUMEN

GABAϱ receptors are distinctive GABAergic receptors from other ionotropic GABAA and metabotropic GABAB receptors in their pharmacological, biochemical, and electrophysiological properties. Although GABA-ϱ1 receptors are the most studied in this subfamily, GABA-ϱ2 receptors are widely distributed in the brain and are considered a potential target for treating neurological disorders such as stroke. The structure of GABA-ϱ2 receptors and their pharmacological features are poorly studied. We generated the first homology model of GABA-ϱ2 channel, which predicts similar major interactions of GABA with the binding-site residues in GABA-ϱ1 and GABA-ϱ2 channels. We also investigated the pharmacological properties of several GABA analogues on the activity of GABA-ϱ2 receptors. In comparison to their pharmacological effect on GABA-ϱ1 receptors, the activation effect of these ligands and their potentiation/inhibition impact on GABA response have interestingly shown inter-selectivity between the two GABA-ϱ receptors. Our results suggest that several GABA analogues can be used as research tools to study the distinctive physiology of GABA-ϱ1 and GABA-ϱ2 receptors. Furthermore, their partial agonist effect may hold promise for the future discovery of selective modulatory agents on GABAA receptors.

20.
Neurochem Int ; 153: 105258, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34933011

RESUMEN

The orthosteric binding site of GABA-gated ion channels has been widely explored. Many residues in the binding site of GABA were studied. The interactions due to the binding of GABA into the binding site drive channel activation and determine the potency and efficacy of GABA response. The combined effect of a competitive ligand and GABA on GABA-ρ1 receptors has been poorly studied. Here, we used point mutations, molecular modeling, and electrophysiological studies to explore the role of two hydrophilic residues (Serine 168 and Serine 243) of the GABA-ρ1 receptors in response to the binding of GABA and other studied ligands. Our results suggested that Ser168 residue stabilizes either closed state or open conformation depending on the other determinant interactions of each state. On the other hand, Ser243 residue is predicted to form different inter-subunit interactions with residues in the adjacent subunit at different states of the channel. Our current findings enlighten us to reasonably explain the additive/inhibitive effects of applying a competitive ligand with GABA simultaneously. Understanding the mixed effect of potentiation and inhibition would facilitate the discovery of new drugs to work as a direct GABA's activity modulators with more selectivity at various subunits forming GABA-gated ion channels.


Asunto(s)
Receptores de GABA , Ácido gamma-Aminobutírico , Sitios de Unión , Ligandos , Modelos Moleculares , Receptores de GABA/metabolismo , Receptores de GABA-A/metabolismo , Ácido gamma-Aminobutírico/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...