Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
medRxiv ; 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37693435

RESUMEN

Background: Prior epidemiological research has linked PTSD with specific physical health problems, but the comprehensive landscape of medical conditions associated with PTSD remains uncharacterized. Electronic health records (EHR) provide an opportunity to overcome prior clinical knowledge gaps and uncover associations with biological relevance that potentially vary by sex. Methods: PTSD was defined among biobank participants (total N=123,365) in a major healthcare system using two ICD code-based definitions: broad (1+ PTSD or acute stress codes versus 0; NCase=14,899) and narrow (2+ PTSD codes versus 0; NCase=3,026). Using a phenome-wide association (PheWAS) design, we tested associations between each PTSD definition and all prevalent disease umbrella categories, i.e., phecodes. We also conducted sex-stratified PheWAS analyses including a sex-by-diagnosis interaction term in each logistic regression. Results: A substantial number of phecodes were significantly associated with PTSDNarrow (61%) and PTSDBroad (83%). While top associations were shared between the two definitions, PTSDBroad captured 334 additional phecodes not significantly associated with PTSDNarrow and exhibited a wider range of significantly associated phecodes across various categories, including respiratory, genitourinary, and circulatory conditions. Sex differences were observed, in that PTSDBroad was more strongly associated with osteoporosis, respiratory failure, hemorrhage, and pulmonary heart disease among male patients, and with urinary tract infection, acute pharyngitis, respiratory infections, and overweight among female patients. Conclusions: This study provides valuable insights into a diverse range of comorbidities associated with PTSD, including both known and novel associations, while highlighting the influence of sex differences and the impact of defining PTSD using EHR.

2.
Sci Adv ; 9(23): eadg8558, 2023 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-37294757

RESUMEN

Opioid use disorder (OUD) looms as one of the most severe medical crises facing society. More effective therapeutics will require a deeper understanding of molecular changes supporting drug-taking and relapse. Here, we develop a brain reward circuit-wide atlas of opioid-induced transcriptional regulation by combining RNA sequencing (RNA-seq) and heroin self-administration in male mice modeling multiple OUD-relevant conditions: acute heroin exposure, chronic heroin intake, context-induced drug-seeking following abstinence, and relapse. Bioinformatics analysis of this rich dataset identified numerous patterns of transcriptional regulation, with both region-specific and pan-circuit biological domains affected by heroin. Integration of RNA-seq data with OUD-relevant behavioral outcomes uncovered region-specific molecular changes and biological processes that predispose to OUD vulnerability. Comparisons with human OUD RNA-seq and genome-wide association study data revealed convergent molecular abnormalities and gene candidates with high therapeutic potential. These studies outline molecular reprogramming underlying OUD and provide a foundational resource for future investigations into mechanisms and treatment strategies.


Asunto(s)
Heroína , Trastornos Relacionados con Opioides , Humanos , Ratones , Masculino , Animales , Heroína/efectos adversos , Estudio de Asociación del Genoma Completo , Encéfalo , Recompensa , Recurrencia
3.
Transl Psychiatry ; 13(1): 129, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-37076454

RESUMEN

Major depressive disorder (MDD) is a complex and heterogeneous psychiatric syndrome with genetic and environmental influences. In addition to neuroanatomical and circuit-level disturbances, dysregulation of the brain transcriptome is a key phenotypic signature of MDD. Postmortem brain gene expression data are uniquely valuable resources for identifying this signature and key genomic drivers in human depression; however, the scarcity of brain tissue limits our capacity to observe the dynamic transcriptional landscape of MDD. It is therefore crucial to explore and integrate depression and stress transcriptomic data from numerous, complementary perspectives to construct a richer understanding of the pathophysiology of depression. In this review, we discuss multiple approaches for exploring the brain transcriptome reflecting dynamic stages of MDD: predisposition, onset, and illness. We next highlight bioinformatic approaches for hypothesis-free, genome-wide analyses of genomic and transcriptomic data and their integration. Last, we summarize the findings of recent genetic and transcriptomic studies within this conceptual framework.


Asunto(s)
Trastorno Depresivo Mayor , Humanos , Transcriptoma , Estudio de Asociación del Genoma Completo , Encéfalo/metabolismo , Biología Computacional , Predisposición Genética a la Enfermedad
4.
Sci Adv ; 9(6): eadd8946, 2023 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-36763659

RESUMEN

Cocaine use disorder (CUD) is an intractable syndrome, and rising overdose death rates represent a substantial public health crisis that exacts tremendous personal and financial costs on patients and society. Sharp increases in cocaine use drive the urgent need for better mechanistic insight into this chronic relapsing brain disorder that currently lacks effective treatment options. To investigate the transcriptomic changes involved, we conducted RNA sequencing on two striatal brain regions that are heavily implicated in CUD, the nucleus accumbens and caudate nucleus, from men suffering from CUD and matched controls. Weighted gene coexpression analyses identified CUD-specific gene networks enriched in ionotropic receptors and linked to lowered neuroinflammation, contrasting the proinflammatory responses found in opioid use disorder. Integration of comprehensive transcriptomic datasets from mouse cocaine self-administration models revealed evolutionarily conserved gene networks in CUD that implicate especially D1 medium spiny neurons as drivers of cocaine-induced plasticity.


Asunto(s)
Trastornos Relacionados con Cocaína , Cocaína , Masculino , Humanos , Ratones , Animales , Cocaína/farmacología , Redes Reguladoras de Genes , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Trastornos Relacionados con Cocaína/genética , Encéfalo/metabolismo
5.
bioRxiv ; 2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36711574

RESUMEN

Opioid use disorder (OUD) looms as one of the most severe medical crises currently facing society. More effective therapeutics for OUD requires in-depth understanding of molecular changes supporting drug-taking and relapse. Recent efforts have helped advance these aims, but studies have been limited in number and scope. Here, we develop a brain reward circuit-wide atlas of opioid-induced transcriptional regulation by combining RNA sequencing (RNAseq) and heroin self-administration in male mice modeling multiple OUD-relevant conditions: acute heroin exposure, chronic heroin intake, context-induced drug-seeking following prolonged abstinence, and heroin-primed drug-seeking (i.e., "relapse"). Bioinformatics analysis of this rich dataset identified numerous patterns of molecular changes, transcriptional regulation, brain-region-specific involvement in various aspects of OUD, and both region-specific and pan-circuit biological domains affected by heroin. Integrating RNAseq data with behavioral outcomes using factor analysis to generate an "addiction index" uncovered novel roles for particular brain regions in promoting addiction-relevant behavior, and implicated multi-regional changes in affected genes and biological processes. Comparisons with RNAseq and genome-wide association studies from humans with OUD reveal convergent molecular regulation that are implicated in drug-taking and relapse, and point to novel gene candidates with high therapeutic potential for OUD. These results outline broad molecular reprogramming that may directly promote the development and maintenance of OUD, and provide a foundational resource to the field for future research into OUD mechanisms and treatment strategies.

6.
bioRxiv ; 2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38234801

RESUMEN

To explain why individuals exposed to identical stressors experience divergent clinical outcomes, we determine how molecular encoding of stress modifies genetic risk for brain disorders. Analysis of post-mortem brain (n=304) revealed 8557 stress-interactive expression quantitative trait loci (eQTLs) that dysregulate expression of 915 eGenes in response to stress, and lie in stress-related transcription factor binding sites. Response to stress is robust across experimental paradigms: up to 50% of stress-interactive eGenes validate in glucocorticoid treated hiPSC-derived neurons (n=39 donors). Stress-interactive eGenes show brain region- and cell type-specificity, and, in post-mortem brain, implicate glial and endothelial mechanisms. Stress dysregulates long-term expression of disorder risk genes in a genotype-dependent manner; stress-interactive transcriptomic imputation uncovered 139 novel genes conferring brain disorder risk only in the context of traumatic stress. Molecular stress-encoding explains individualized responses to traumatic stress; incorporating trauma into genomic studies of brain disorders is likely to improve diagnosis, prognosis, and drug discovery.

7.
Front Oncol ; 12: 767479, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35847893

RESUMEN

Regions of hypoxia are common in solid tumors and drive changes in gene expression that increase risk of cancer metastasis. Tumor cells must respond to the stress of hypoxia by activating genes to modify cell metabolism and antioxidant response to improve survival. The goal of the current study was to determine the effect of hypoxia on cell metabolism and markers of oxidative stress in metastatic (metM-Wntlung) compared with nonmetastatic (M-Wnt) murine mammary cancer cell lines. We show that hypoxia induced a greater suppression of glutamine to glutamate conversion in metastatic cells (13% in metastatic cells compared to 7% in nonmetastatic cells). We also show that hypoxia increased expression of genes involved in antioxidant response in metastatic compared to nonmetastatic cells, including glutamate cysteine ligase catalytic and modifier subunits and malic enzyme 1. Interestingly, hypoxia increased the mRNA level of the transaminase glutamic pyruvic transaminase 2 (Gpt2, 7.7-fold) only in metM-Wntlung cells. The change in Gpt2 expression was accompanied by transcriptional (4.2-fold) and translational (6.5-fold) induction of the integrated stress response effector protein activating transcription factor 4 (ATF4). Genetic depletion ATF4 demonstrated importance of this molecule for survival of hypoxic metastatic cells in detached conditions. These findings indicate that more aggressive, metastatic cancer cells utilize hypoxia for metabolic reprogramming and induction of antioxidant defense, including activation of ATF4, for survival in detached conditions.

8.
Nat Genet ; 54(1): 4-17, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34992268

RESUMEN

Microglia have emerged as important players in brain aging and pathology. To understand how genetic risk for neurological and psychiatric disorders is related to microglial function, large transcriptome studies are essential. Here we describe the transcriptome analysis of 255 primary human microglial samples isolated at autopsy from multiple brain regions of 100 individuals. We performed systematic analyses to investigate various aspects of microglial heterogeneities, including brain region and aging. We mapped expression and splicing quantitative trait loci and showed that many neurological disease susceptibility loci are mediated through gene expression or splicing in microglia. Fine-mapping of these loci nominated candidate causal variants that are within microglia-specific enhancers, finding associations with microglial expression of USP6NL for Alzheimer's disease and P2RY12 for Parkinson's disease. We have built the most comprehensive catalog to date of genetic effects on the microglial transcriptome and propose candidate functional variants in neurological and psychiatric disorders.


Asunto(s)
Envejecimiento/metabolismo , Encéfalo/metabolismo , Microglía/metabolismo , Envejecimiento/genética , Enfermedad de Alzheimer/metabolismo , Atlas como Asunto , Conjuntos de Datos como Asunto , Femenino , Perfilación de la Expresión Génica , Heterogeneidad Genética , Predisposición Genética a la Enfermedad , Humanos , Masculino , Enfermedad de Parkinson/metabolismo , Sitios de Carácter Cuantitativo , Empalme del ARN , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA