Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Biosci Biotechnol Biochem ; 88(5): 571-576, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38383669

RESUMEN

This study demonstrates the effect of fermented botanical product (FBP) on Ralstonia pseudosolanacearum-induced bacterial wilt disease and unravels its action mechanism. Soaking with diluted FBP solutions (0.1%-0.5%) significantly suppressed bacterial wilt in tomato plants, and FBP-treated tomato plants grew well against R. pseudosolanacearum infection. Growth assays showed that FBP had no antibacterial effect but promoted R. pseudosolanacearum growth. In contrast, few or no R. pseudosolanacearum cells were detected in aerial parts of tomato plants grown in FBP-soaked soil. Subsequent infection assays using the chemotaxis-deficient mutant (ΔcheA) or the root-dip inoculation method revealed that FBP does not affect pathogen migration to plant roots during infection. Moreover, FBP-pretreated tomato plants exhibited reduced bacterial wilt in the absence of FBP. These findings suggest that the plant, but not the pathogen, could be affected by FBP, resulting in an induced resistance against R. pseudosolanacearum, leading to a suppressive effect on bacterial wilt.


Asunto(s)
Fermentación , Fertilizantes , Enfermedades de las Plantas , Ralstonia , Solanum lycopersicum , Solanum lycopersicum/microbiología , Solanum lycopersicum/crecimiento & desarrollo , Ralstonia/efectos de los fármacos , Ralstonia/crecimiento & desarrollo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Raíces de Plantas/microbiología
3.
NPJ Genom Med ; 7(1): 29, 2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35414074

RESUMEN

Idiopathic hypersomnia (IH) is a rare, heterogeneous sleep disorder characterized by excessive daytime sleepiness. In contrast to narcolepsy type 1, which is a well-defined type of central disorders of hypersomnolence, the etiology of IH is poorly understood. No susceptibility loci associated with IH have been clearly identified, despite the tendency for familial aggregation of IH. We performed a variation screening of the prepro-orexin/hypocretin and orexin receptors genes and an association study for IH in a Japanese population, with replication (598 patients and 9826 controls). We identified a rare missense variant (g.42184347T>C; p.Lys68Arg; rs537376938) in the cleavage site of prepro-orexin that was associated with IH (minor allele frequency of 1.67% in cases versus 0.32% in controls, P = 2.7 × 10-8, odds ratio = 5.36). Two forms of orexin (orexin-A and -B) are generated from cleavage of one precursor peptide, prepro-orexin. The difference in cleavage efficiency between wild-type (Gly-Lys-Arg; GKR) and mutant (Gly-Arg-Arg; GRR) peptides was examined by assays using proprotein convertase subtilisin/kexin (PCSK) type 1 and PCSK type 2. In both PCSK1 and PCSK2 assays, the cleavage efficiency of the mutant peptide was lower than that of the wild-type peptide. We also confirmed that the prepro-orexin peptides themselves transmitted less signaling through orexin receptors than mature orexin-A and orexin-B peptides. These results indicate that a subgroup of IH is associated with decreased orexin signaling, which is believed to be a hallmark of narcolepsy type 1.

4.
Sleep Biol Rhythms ; 20(1): 137-148, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38469065

RESUMEN

Idiopathic hypersomnia (IH) is a rare sleep disorder characterized by excessive daytime sleepiness, great difficulty upon awakening, and prolonged sleep time. In contrast to narcolepsy type 1, which is a well-recognized hypersomnia, the etiology of IH remains poorly understood. No susceptibility loci for IH have been identified, although familial aggregations have been observed among patients with IH. Narcolepsy type 1 is strongly associated with human leukocyte antigen (HLA)-DQB1*06:02; however, no significant associations between IH and HLA alleles have been reported. To identify genetic variants that affect susceptibility to IH, we performed a genome-wide association study (GWAS) and two replication studies involving a total of 414 Japanese patients with IH and 6587 healthy Japanese individuals. A meta-analysis of the three studies found no single-nucleotide polymorphisms (SNPs) that reached the genome-wide significance level. However, we identified several candidate SNPs for IH. For instance, a common genetic variant (rs2250870) within an intron of PDE9A was suggestively associated with IH. rs2250870 was significantly associated with expression levels of PDE9A in not only whole blood but also brain tissues. The leading SNP in the PDE9A region was the same in associations with both IH and PDE9A expression. PDE9A is a potential target in the treatment of several brain diseases, such as depression, schizophrenia, and Alzheimer's disease. It will be necessary to examine whether PDE9A inhibitors that have demonstrated effects on neurophysiologic and cognitive function can contribute to the development of new treatments for IH, as higher expression levels of PDE9A were observed with regard to the risk allele of rs2250870. The present study constitutes the first GWAS of genetic variants associated with IH. A larger replication study will be required to confirm these associations. Supplementary Information: The online version contains supplementary material available at 10.1007/s41105-021-00349-2.

5.
J Biosci Bioeng ; 132(5): 445-450, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34380602

RESUMEN

Psychrophilic enzymes are generally active at low temperatures, and their functions have attracted much interest in food processing, biochemical research, and chemical industry. However, their activities are usually lost above their growth temperature because of their flexible and unstable structure. Here, we unexpectedly found that a homodimeric NADP-dependent malic enzyme from a psychrophilic bacterium, Shewanella livingstonensis Ac10 (SL-ME) showed sufficient activity with 60°C treatment, similar to its counterpart from mesophilic Escherichia coli (MaeB). Consistently, SL-ME and MaeB irreversibly denatured at 71.9°C and 64.5°C, respectively. Therefore, SL-ME shows robust catalytic activity, which appears to be advantageous for its application in the bioconversion of NADP to NADPH, an essential ingredient for membrane phospholipid synthesis.


Asunto(s)
Shewanella , Frío , NADP , Temperatura
6.
Nat Sci Sleep ; 13: 899-921, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34234596

RESUMEN

PURPOSE: The thalamus, the region that forms the attentional network and transmits external sensory signals to the entire brain, is important for sleepiness. Herein, we examined the relationship between activity in the thalamus-seed brain network and subjective sleepiness. MATERIALS AND METHODS: Fifteen healthy male participants underwent an experiment comprising a baseline evaluation and two successive interventions, a 9-day sleep extension followed by 1-night total sleep deprivation. Pre- and post-intervention tests included the Karolinska sleepiness scale and neuroimaging for arterial spin labeling and functional connectivity. We examined the association between subjective sleepiness and the functional magnetic resonance imaging indices. RESULTS: The functional connectivity between the left or right thalamus and various brain regions displayed a significant negative association with subjective sleepiness, and the functional connectivity between the left and right thalamus displayed a significant positive association with subjective sleepiness. The graph theory analysis indicated that the number of positive functional connectivity related to the thalamus showed a strong negative association with subjective sleepiness, and conversely, the number of negative functional connectivity showed a positive association with subjective sleepiness. Arterial spin labeling analysis indicated that the blood flow in both the left and right thalami was significantly negatively associated with subjective sleepiness. Functional connectivity between the anterior cingulate cortex and salience network areas of the left insular cortex, and that between the anterior and posterior cingulate cortices showed a strong positive and negative association with subjective sleepiness, respectively. CONCLUSION: Subjective sleepiness and the thalamic-cortical network dynamics are strongly related, indicating the application of graph theory to study sleepiness and consciousness. These results also demonstrate that resting functional connectivity largely reflects the "state" of the subject, suggesting that the control of sleep and conscious states is essential when using functional magnetic resonance imaging indices as biomarkers.

7.
Biosci Biotechnol Biochem ; 85(3): 697-702, 2021 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-33624770

RESUMEN

We have demonstrated that chemotaxis to l-malate facilitated motility of Ralstonia pseudosolanacearum MAFF 106611, a causative agent of bacterial wilt, to plant roots. Here, we evaluated the assumption that the disruption of chemotaxis to l-malate leads to inhibition of plant infection by R. pseudosolanacearum MAFF 106611. Chemotactic assays revealed that chemotaxis to l-malate was completely or partially inhibited in the presence of l-, d-, and dl-malate, respectively. Moreover, l-malate served as a carbon and energy source for R. pseudosolanacearum MAFF 106611, while d-malate inhibited the growth of this bacterium. In the sand-soak inoculation virulence assay for tomato plants, the addition of l-, d-, and dl-malate to sand suppressed the plant infection. We concluded that supplementation of l- and dl-malate suppresses tomato plant infection with R. pseudosolanacearum MAFF 106611 by disrupting its chemotaxis to l-malate, while d-malate suppresses it by both the disruption of l-malate chemotaxis and inhibition of growth.


Asunto(s)
Quimiotaxis/efectos de los fármacos , Raíces de Plantas/microbiología , Ralstonia/patogenicidad , Solanum lycopersicum/microbiología , Malatos/farmacología , Ralstonia/efectos de los fármacos , Ralstonia/crecimiento & desarrollo
8.
Biosci Biotechnol Biochem ; 85(3): 728-738, 2021 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-33624773

RESUMEN

3-Hydroxypropionic acid (3-HP) and 1,3-propanediol (1,3-PDO) have tremendous potential markets in many industries. This study evaluated the simultaneous biosynthesis of the 2 compounds using the new psychrophile-based simple biocatalyst (PSCat) reaction system. The PSCat method is based on the expression of glycerol dehydratase, 1,3-propanediol dehydrogenase, and aldehyde dehydrogenase from Klebsiella pneumoniae in Shewanella livingstonensis Ac10 and Shewanella frigidimarina DSM 12253, individually. Heat treatment at 45 °C for 15 min deactivated the intracellular metabolic flux, and the production process was started after adding substrate, cofactor, and coenzyme. In the solo production process after 1 h, the maximum production of 3-HP was 62.0 m m. For 1,3-PDO, the maximum production was 25.0 m m. In the simultaneous production process, productivity was boosted, and the production of 3-HP and 1,3-PDO increased by 13.5 and 4.9 m m, respectively. Hence, the feasibility of the individual production and the simultaneous biosynthesis system were verified in the new PSCat approach.


Asunto(s)
Ácido Láctico/análogos & derivados , Glicoles de Propileno/metabolismo , Biocatálisis , Calor , Klebsiella pneumoniae/enzimología , Ácido Láctico/metabolismo , Shewanella/enzimología
9.
Sci Rep ; 11(1): 3600, 2021 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-33574355

RESUMEN

In modern society, many people have insomnia. Chronic insomnia has been noted as a risk factor for depression. However, there are few functional imaging studies of the brain on affective functions in chronic insomnia. This study aimed to investigate brain activities induced by emotional stimuli in chronic insomnia patients. Fifteen patients with primary insomnia and 30 age and gender matched healthy controls participated in this study. Both groups were presented images of fearful, happy, and neutral expressions consciously and non-consciously while undergoing MRI to compare the activity in regions of the brain responsible for emotions. Conscious presentation of the Happy-Neutral contrast showed significantly lower activation in the right orbitofrontal cortex of patients compared to healthy controls. The Happy-Neutral contrast presented in a non-conscious manner resulted in significantly lower activation of the ventral striatum, right insula, putamen, orbitofrontal cortex and ventral tegmental area in patients compared to healthy controls. Our findings revealed that responsiveness to positive emotional stimuli were decreased in insomniac patients. Specifically, brain networks associated with rewards and processing positive emotions showed decreased responsiveness to happy emotions especially for non-conscious image. The magnitude of activity in these areas also correlated with severity of insomnia, even after controlling for depression scale scores. These findings suggest that insomnia induces an affective functional disorder through an underlying mechanism of decreased sensitivity in the regions of the brain responsible for emotions and rewards to positive emotional stimuli.


Asunto(s)
Encéfalo/fisiología , Emociones/fisiología , Corteza Prefrontal/diagnóstico por imagen , Trastornos del Inicio y del Mantenimiento del Sueño/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Medios de Contraste/administración & dosificación , Depresión/diagnóstico por imagen , Depresión/fisiopatología , Miedo/fisiología , Femenino , Felicidad , Voluntarios Sanos , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Red Nerviosa/fisiología , Corteza Prefrontal/fisiología , Recompensa , Factores de Riesgo , Trastornos del Inicio y del Mantenimiento del Sueño/diagnóstico , Trastornos del Inicio y del Mantenimiento del Sueño/fisiopatología
10.
J Biotechnol ; 323: 293-301, 2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-32931876

RESUMEN

1,3-Propanediol (1,3-PDO) is a valuable compound with a large potential market in many industries. This study aimed to evaluate the abilities of the Psychrophile-based Simple bioCatalyst (PSCat) reaction system to biosynthesize 1,3-PDO. This biocatalyst has a potential platform that replaces the chemical-based production counterparts. The two genes involved in the metabolic pathway were expressed both individually and together in the psychrophilic host bacterium. The intracellular metabolic flux was deactivated using heat treatment, at 45 °C for 15 min. After individual gene expression (25.0 mM), 1,3-PDO productivity of the cells increased by approximately 2.5 times, in comparison to when genes were expressed together (10.2 mM). Productivity was boosted (31.1 mM) when the cofactor regeneration system was activated in the biocatalyst. Hence, both the ability of individual gene expression and the cofactor regeneration system were verified in the PSCat approach. Nonetheless, further research is necessary to develop and optimize this process for industrial production.


Asunto(s)
Glicoles de Propileno/metabolismo , Shewanella/genética , Shewanella/metabolismo , Coenzimas , Expresión Génica , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos/genética , Glicerol/metabolismo , Calor , Klebsiella pneumoniae/metabolismo , Redes y Vías Metabólicas , NAD , Ultrasonido
11.
Biosci Biotechnol Biochem ; 84(9): 1948-1957, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32538292

RESUMEN

Pseudomonas protegens CHA0, known as plant-growth-promoting rhizobacterium, showed positive chemotactic responses toward proteinaceous L-amino acids. Genomic analysis revealed that P. protegens CHA0 possesses four putative chemoreceptors for amino acids (designated CtaA, CtaB, CtaC, and CtaD, respectively). Pseudomonas aeruginosa PCT2, a mutant defective in chemotaxis to amino acids, harboring a plasmid containing each of ctaA, ctaB, ctaC, and ctaD showed chemotactic responses to 20, 4, 4, and 11 types of amino acids, respectively. To enhance chemotaxis toward amino acids, we introduced the plasmids containing ctaA, ctaB, ctaC, or ctaD into P. protegens CHA0. By overexpression of the genes, we succeeded in enhancing chemotaxis toward more than half of the tested ligands. However, unexpectedly, the P. protegens CHA0 transformants showed unchanged or decreased responses to some amino acids when compared to wild-type CHA0. We speculate that alternation of expression of a chemoreceptor may affect the abundance of other chemoreceptors. ABBREVIATIONS: cDNA: complementary DNA; LBD: ligand-binding domain; MCP: methyl-accepting chemotaxis protein; PDC: PhoQ/DcuS/CitA; PGPR: plant-growth-promoting rhizobacteria; qRT-PCR: quantitative reverse transcription PCR.


Asunto(s)
Aminoácidos/metabolismo , Quimiotaxis/genética , Proteínas Quimiotácticas Aceptoras de Metilo/genética , Desarrollo de la Planta , Pseudomonas/citología , Pseudomonas/fisiología , Expresión Génica , Ligandos , Plásmidos/genética , Pseudomonas/genética , Transformación Genética
12.
J Biotechnol ; 312: 56-62, 2020 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-32151642

RESUMEN

Whole-cell biocatalysts have numerous advantages including ease of preparation and coenzyme recovery over purified industrially used enzymes. However, the cell membrane can occasionally hinder cytoplasmic diffusion of the substrate, resulting in reduced biotransformation efficiency. Psychrophiles can grow and reproduce at low temperatures; their cell membranes are highly flexible, and their permeability can be improved via heat treatment at a moderate temperature. The aim of this study was to generate a psychrophile-based simple biocatalyst (PSCats) using Shewanella livingstonensis Ac10. This biocatalyst contained two enzymes that were heterologously expressed and converted citric acid to itaconic acid, thereby serving as a potential platform replacing the petroleum-based counterparts. The efficiency of the biocatalyst was increased via heat treatment at 45 °C for 15 min, and itaconic acid productivity of the cells after heat treatment (1.41 g/L/h) was increased around 6-fold in comparison with those without heat treatment (0.22 g/L/h). A large part of the productivity remained (67.3 %) when the cells were reused for 5 times (10 h for each reaction). Therefore, the potential of this heat-permeabilized psychrophile host to increase the productivity of whole-cell biocatalyst was proved; however, further research is necessary to understand the underlying mechanism.


Asunto(s)
Permeabilidad de la Membrana Celular/efectos de los fármacos , Permeabilidad de la Membrana Celular/fisiología , Enzimas/farmacología , Shewanella/metabolismo , Succinatos/metabolismo , Aconitato Hidratasa , Ácido Cítrico/metabolismo , Frío , Citoplasma/metabolismo , Escherichia coli/genética , Calor , Metaboloma , Shewanella/genética , Shewanella/crecimiento & desarrollo
13.
Sleep ; 43(3)2020 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-32040590

RESUMEN

Vigilance deficits account for a substantial number of accidents and errors. Current techniques to detect vigilance impairment measure only the most severe level evident in eyelid closure and falling asleep, which is often too late to avoid an accident or error. The present study sought to identify ocular biometrics of intermediate impairment of vigilance and develop a new technique that could detect a range of deficits in vigilant attention (VA). Sixteen healthy adults performed well-validated Psychomotor Vigilance Test (PVT) for tracking vigilance attention while undergoing simultaneous recording of eye metrics every 2 hours during 38 hours of continuous wakefulness. A novel marker was found that measured VA when the eyes were open-the prevalence of microsaccades. Notably, the prevalence of microsaccades decreased in response to sleep deprivation and time-on-task. In addition, a novel algorithm for detecting multilevel VA was developed, which estimated performance on the PVT by integrating the novel marker with other eye-related indices. The novel algorithm also tracked changes in intermediate level of VA (specific reaction times in the PVT, i.e. 300-500 ms) during prolonged time-on-task and sleep deprivation, which had not been tracked previously by conventional techniques. The implication of the findings is that this novel algorithm, named "eye-metrical estimation version of the PVT: PVT-E," can be used to reduce human-error-related accidents caused by vigilance impairment even when its level is intermediate.


Asunto(s)
Benchmarking , Vigilia , Adulto , Atención , Humanos , Desempeño Psicomotor , Tiempo de Reacción , Privación de Sueño/epidemiología
14.
J Hum Genet ; 64(12): 1219-1225, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31527662

RESUMEN

Delayed sleep-wake phase disorder (DSWPD) is a subtype of circadian rhythm sleep-wake disorders, and is characterized by an inability to fall asleep until late at night and wake up at a socially acceptable time in the morning. The study aim was to identify low-frequency nonsense and missense variants that are associated with DSWPD. Candidate variants in circadian rhythm-related genes were extracted by integration of genetic variation databases and in silico assessment. We narrowed down the candidates to six variants. To examine whether the six variants are associated with DSWPD, we performed an association study in 236 Japanese patients with DSWPD and 1436 controls. A low-frequency missense variant (p.Val1205Met) in PER2 showed a significant association with DSWPD (2.5% in cases and 1.1% in controls, P = 0.026, odds ratio (OR) = 2.32). The variant was also associated with idiopathic hypersomnia known to have a tendency toward phase delay (P = 0.038, OR = 2.07). PER2 forms a heterodimer with CRY, and the heterodimer plays an important role in the regulation of circadian rhythms. Val1205 is located in the CRY-binding domain of PER2 and was hypothesized to interact with CRY. The p.Val1205Met substitution could be a potential genetic marker for DSWPD.


Asunto(s)
Pueblo Asiatico/genética , Variación Genética/genética , Mutación Missense/genética , Proteínas Circadianas Period/genética , Trastornos del Sueño del Ritmo Circadiano/genética , Alelos , Estudios de Casos y Controles , Frecuencia de los Genes/genética , Humanos
15.
J Biosci Bioeng ; 127(2): 169-175, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30082220

RESUMEN

The bacterial wilt pathogen Ralstonia pseudosolanacearum Ps29 exhibited chemotactic responses to citrate. This pathogen expresses 22 putative chemoreceptors. In screening a complete collection of mcp single-gene deletion mutants of Ps29, none showed a significant decrease in response to citrate compared with the wild-type strain. Analysis of a collection of stepwise- and multiple-deletion mutants of Ps29 revealed that the RS_RS07350 homolog (designated McpC) and McpP (chemoreceptor mediating both positive chemotaxis to phosphate and negative chemotaxis to maleate) are chemoreceptors for citrate. Double deletion of mcpC and mcpP markedly reduced the response to citrate, indicating that McpC and McpP are major chemoreceptors for citrate. Wild-type Ps29 was attracted to both free citrate and citrate complexed with divalent metal cations such as magnesium and calcium. The mcpC mcpP double-deletion mutant also showed significant reduction in chemotaxis to Mg2+- and Ca2+-citrate complexes. Introduction of a plasmid harboring the mcpC gene (but not the mcpP gene) restored the ability to respond to these citrate-metal complexes, demonstrating that McpC can sense complexes of citrate and metal ions such as Mg2+ and Ca2+ as well as free citrate. Thus, R. pseudosolanacearum Ps29 expresses two chemoreceptors for citrate. In plant infection assays using tomato seedlings, the mcpC and mcpP single- and double-deletion mutants of the highly virulent R. pseudosolanacearum MAFF106611 strain were as infectious as the wild-type strain, suggesting that citrate chemotaxis does not play an important role in infection of tomato plants in this assay system.


Asunto(s)
Ácido Cítrico/metabolismo , Complejos de Coordinación/metabolismo , Proteínas Quimiotácticas Aceptoras de Metilo/genética , Ralstonia/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Quimiotaxis/genética , Citratos/química , Citratos/metabolismo , Citratos/farmacología , Ácido Cítrico/química , Ácido Cítrico/farmacología , Clonación Molecular , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Eliminación de Gen , Infecciones por Bacterias Gramnegativas/metabolismo , Infecciones por Bacterias Gramnegativas/microbiología , Solanum lycopersicum/microbiología , Metales/química , Metales/metabolismo , Proteínas Quimiotácticas Aceptoras de Metilo/química , Proteínas Quimiotácticas Aceptoras de Metilo/aislamiento & purificación , Proteínas Quimiotácticas Aceptoras de Metilo/metabolismo , Enfermedades de las Plantas/microbiología , Unión Proteica/efectos de los fármacos , Ralstonia/metabolismo , Ralstonia/patogenicidad
16.
mBio ; 9(6)2018 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-30425146

RESUMEN

Histamine is a key biological signaling molecule. It acts as a neurotransmitter in the central and peripheral nervous systems and coordinates local inflammatory responses by modulating the activity of different immune cells. During inflammatory processes, including bacterial infections, neutrophils stimulate the production and release of histamine. Here, we report that the opportunistic human pathogen Pseudomonas aeruginosa exhibits chemotaxis toward histamine. This chemotactic response is mediated by the concerted action of the TlpQ, PctA, and PctC chemoreceptors, which display differing sensitivities to histamine. Low concentrations of histamine were sufficient to activate TlpQ, which binds histamine with an affinity of 639 nM. To explore this binding, we resolved the high-resolution structure of the TlpQ ligand binding domain in complex with histamine. It has an unusually large dCACHE domain and binds histamine through a highly negatively charged pocket at its membrane distal module. Chemotaxis to histamine may play a role in the virulence of P. aeruginosa by recruiting cells at the infection site and consequently modulating the expression of quorum-sensing-dependent virulence genes. TlpQ is the first bacterial histamine receptor to be described and greatly differs from human histamine receptors, indicating that eukaryotes and bacteria have pursued different strategies for histamine recognition.IMPORTANCE Genome analyses indicate that many bacteria possess an elevated number of chemoreceptors, suggesting that these species are able to perform chemotaxis to a wide variety of compounds. The scientific community is now only beginning to explore this diversity and to elucidate the corresponding physiological relevance. The discovery of histamine chemotaxis in the human pathogen Pseudomonas aeruginosa provides insight into tactic movements that occur within the host. Since histamine is released in response to bacterial pathogens, histamine chemotaxis may permit bacterial migration and accumulation at infection sites, potentially modulating, in turn, quorum-sensing-mediated processes and the expression of virulence genes. As a consequence, the modulation of histamine chemotaxis by signal analogues may result in alterations of the bacterial virulence. As the first report of bacterial histamine chemotaxis, this study lays the foundation for the exploration of the physiological relevance of histamine chemotaxis and its role in pathogenicity.


Asunto(s)
Proteínas Bacterianas/metabolismo , Quimiotaxis , Histamina/farmacología , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/patogenicidad , Unión Proteica , Infecciones por Pseudomonas/microbiología , Pseudomonas putida/efectos de los fármacos , Pseudomonas putida/metabolismo , Virulencia
17.
J Hum Genet ; 63(12): 1259-1267, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30266950

RESUMEN

Essential hypersomnia (EHS) is a lifelong disorder characterized by excessive daytime sleepiness without cataplexy. EHS is associated with human leukocyte antigen (HLA)-DQB1*06:02, similar to narcolepsy with cataplexy (narcolepsy). Previous studies suggest that DQB1*06:02-positive and -negative EHS are different in terms of their clinical features and follow different pathological pathways. DQB1*06:02-positive EHS and narcolepsy share the same susceptibility genes. In the present study, we report a genome-wide association study with replication for DQB1*06:02-negative EHS (408 patients and 2247 healthy controls, all Japanese). One single-nucleotide polymorphism, rs10988217, which is located 15-kb upstream of carnitine O-acetyltransferase (CRAT), was significantly associated with DQB1*06:02-negative EHS (P = 7.5 × 10-9, odds ratio = 2.63). The risk allele of the disease-associated SNP was correlated with higher expression levels of CRAT in various tissues and cell types, including brain tissue. In addition, the risk allele was associated with levels of succinylcarnitine (P = 1.4 × 10-18) in human blood. The leading SNP in this region was the same in associations with both DQB1*06:02-negative EHS and succinylcarnitine levels. The results suggest that DQB1*06:02-negative EHS may be associated with an underlying dysfunction in energy metabolic pathways.


Asunto(s)
Carnitina O-Acetiltransferasa/genética , Cromosomas Humanos Par 9/genética , Trastornos de Somnolencia Excesiva/genética , Cadenas beta de HLA-DQ/genética , Polimorfismo de Nucleótido Simple , Trastornos de Somnolencia Excesiva/enzimología , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino
18.
Hum Genome Var ; 5: 17, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30083361

RESUMEN

Circadian rhythm sleep-wake disorders (CRSWDs) are characterized by disturbed sleep-wake patterns. We genotyped a PER3 variable number tandem repeat (VNTR) in 248 CRSWD individuals and 925 controls and found no significant association between the VNTR and CRSWDs or morningness-eveningness (diurnal) preferences in the Japanese population. Although the VNTR has been associated with circadian and sleep phenotypes in some other populations, the polymorphism may not be a universal genetic marker.

19.
Microbiology (Reading) ; 163(12): 1880-1889, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29134930

RESUMEN

Ralstonia pseudosolanacearum Ps29 showed repellent responses to alcohols including methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 1,3-propanediol and prenol. R. pseudosolanacearum Ps29 possesses 22 putative chemoreceptors known as methyl-accepting chemotaxis proteins (MCPs). To identify a MCP involved in negative chemotaxis to ethanol, we measured ethanol chemotaxis of a complete collection of single mcp gene deletion mutants of R. pseudosolanacearum Ps29. However, all the mutants showed repellent responses to ethanol comparable to that of the wild-type strain. We constructed a stepwise- and multiple-mcp gene deletion mutant collection of R. pseudosolanacearum Ps29. Analysis of the collection found that an 18-mcp-knockout mutant (strain POC18) failed to respond to ethanol. Complementation analysis using POC18 as the host strain found that introduction of mcpA, mcpT, mcp09, mcpM, mcp15 and mcp19 restored the ability of POC18 to respond to ethanol. However, unexpectedly, strain POC10II, harbouring unmarked deletions in 10 mcp genes including mcpA, mcpT, mcp09, mcpM, mcp15 and mcp19 showed repellent responses to ethanol comparable to that of wild-type Ps29. We hypothesised that multiple mcp mutations in POC18 led to a shortage of MCPs required for formation of functional chemoreceptor arrays. When pPS16 (encoding McpP involved in phosphate chemotaxis) was introduced into POC18, POC18(pPS16) did not respond to phosphate. This result supports the hypothesis. But, genetic analysis revealed that MCPs (Mcp07, Mcp13, Mcp20 and Mcp21) are not essential for ethanol chemotaxis. Thus, we conclude that many and unspecified MCPs are involved in negative chemotaxis to ethanol in R. pseudosolanacearum Ps29.

20.
Sleep ; 40(10)2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28958004

RESUMEN

Epidemiological studies have shown that sleep debt increases the risk of obesity. Experimental total sleep deprivation (TSD) has been reported to activate the reward system in response to food stimuli, but food-related responses in everyday sleep habits, which could lead to obesity, have not been addressed. Here, we report that habitual sleep time at home among volunteers without any sleep concerns was shorter than their optimal sleep time estimated by the 9-day extended sleep intervention, which indicates that participants had already been in sleep debt in their usual sleep habits. The amygdala and anterior insula, which are responsible for both affective responses and reward prediction, were found to exhibit significantly lowered activity in the optimal sleep condition. Additionally, a subsequent one-night period of TSD reactivated the right anterior insula in response to food images; however, the activity level of amygdala remained lowered. These findings indicate that (1) our brain is at risk of hyperactivation to food triggers in everyday life, which could be a risk factor for obesity and lifestyle diseases, and (2) optimal sleep appears to reduce this hypersensitivity to food stimuli.


Asunto(s)
Amígdala del Cerebelo/fisiología , Apetito/fisiología , Corteza Cerebral/fisiología , Obesidad/fisiopatología , Privación de Sueño/fisiopatología , Sueño/fisiología , Adulto , Señales (Psicología) , Femenino , Alimentos , Hábitos , Humanos , Estilo de Vida , Imagen por Resonancia Magnética , Masculino , Recompensa , Privación de Sueño/psicología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...