Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
J Dermatol ; 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39269165

RESUMEN

Familial progressive hyperpigmentation with or without hypopigmentation (FPHH) is an autosomal dominant disorder characterized by widespread skin hyperpigmentation, café-au-lait spots, and hypopigmented circular macules, resulting from KITLG variants. KITLG, expressed by keratinocytes, binds to KIT on melanocytes, stimulating melanogenesis. Disturbances in the KITLG-KIT interaction result in diffuse hyperpigmentation in FPHH. However, the mechanisms behind hypopigmented macule formation remain unclear. This report presents a unique FPHH case in a patient with a novel KITLG mutation (Ser78Leu). Notably, the patient showed multiple hypopigmented macules and striae along the lines of Blaschko. Digital polymerase chain reaction analysis of the DNA from skin and blood tissues indicated a copy-neutral loss of heterozygosity at the KITLG locus, only in the hypopigmented macule. These findings suggest that the hypopigmented macules might result from revertant mosaicism. Conversely, café-au-lait spots do not follow the lines of Blaschko and can superimpose on the hypopigmented striae, indicating a distinct pathogenesis. This case contributes to the understanding of the genetic mechanisms in FPHH.

2.
Int J Clin Oncol ; 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39249554

RESUMEN

BACKGROUND: Cutaneous melanoma (CM) is the most common type in Caucasians, while acral melanoma (AM) and mucosal melanoma (MM), which are resistant to immunotherapies and BRAF/MEK-targeted therapies, are more common in East Asians. Genomic profiling is essential for treating melanomas, but such data are lacking in Japan. METHODS: Comprehensive genomic profiling data compiled in the Center for Cancer Genomics and Advanced Therapeutics (C-CAT) were analyzed. RESULTS: A total of 380 melanomas was analyzed, including 136 CM, 46 AM, 168 MM, and 30 uveal melanoma (UM). MM included conjunctival, sinonasal, oral, esophageal, anorectal, and vulvovaginal melanomas. No significant difference in the median tumor mutational burden (TMB) of CM (3.39 mutations/megabase), AM (2.76), and MM (3.78) was the key finding. Microsatellite instability-high status was found in one case. BRAF V600E/K was found in only 45 patients (12%). Key driver mutations in CM were BRAF (38%), NRAS (21%), NF1 (8%), and KIT (10%), with frequent copy number alterations (CNAs) of CDKN2A, CDKN2B, and MYC. AM was characterized by altered KIT (30%), NRAS (26%), and NF1 (11%) and CDKN2A, CDKN2B, CDK4, MDM2, and CCND1 CNAs. MM was characterized by altered NRAS (24%), KIT (21%), and NF1 (17%) and MYC, KIT, and CDKN2A CNAs, with differences based on anatomical locations. UM bore GNAQ or GNA11 driver mutations (87%) and frequent mutations in SF3B1 or BAP1. CONCLUSION: The distinct genomic profiling in Japanese patients, including lower TMB, compared to Caucasians, is associated with poorer treatment outcomes. This result underscores the need for more effective therapeutic agents.

3.
J Dermatol ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39158191

RESUMEN

Multiple hereditary infundibulocystic basal cell carcinoma syndrome (MHIBCC), an autosomal dominant disorder caused by variants in SUFU, is characterized by numerous infundibulocystic basal cell carcinomas (IBCCs). In this report, we present a possible case of mosaic MHIBCC. A 57-year-old woman underwent the removal of four papules on her face, which were diagnosed as IBCCs. Exome sequencing revealed a SUFU c.1022+1G>A mutation within the skin tumor. The same mutation was detected in her blood but at a lower allele frequency. TA cloning revealed that the allele frequency of the mutation in the blood was 0.07. Additionally, tumor assessment revealed loss of heterozygosity (LOH) in chromosome 10, including the SUFU locus. These results indicate the patient had mosaicism for the SUFU mutation in normal tissues, aligning with the mosaic MHIBCC diagnosis. This, combined with LOH, likely contributed to IBCC development. Mosaic MHIBCC may present with milder symptoms. However, it may still increase the risk of developing brain tumors and more aggressive basal cell carcinoma. The possibility of mosaicism should be investigated in mild MHIBCC cases, where standard genetic tests fail to detect SUFU germline variants.

5.
Biochem Biophys Res Commun ; 708: 149817, 2024 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-38537528

RESUMEN

Epidermal keratinocytes, forming the outermost layer of the human body, serve as a crucial barrier against diverse external stressors such as ultraviolet radiation. Proper keratinocyte differentiation and effective responses to external stimuli are pivotal for maintaining barrier integrity. Heat is one such stimulus that triggers the synthesis of heat shock proteins (HSPs) when cells are exposed to temperatures above 42 °C. Additionally, activation of the transient receptor potential cation channel subfamily V member 1 (TRPV1) occurs at 42 °C. Here, we explore the interplay between TRPV1 signaling and HSP induction in human keratinocytes. Both heat and capsaicin, a TRPV1 agonist, induce expression of HSP27, HSP70, and HSP90 in keratinocytes. Interestingly, pharmacological inhibition of TRPV1 attenuates heat-induced HSP27 expression, but not that of HSP70 or HSP90. Furthermore, both heat and capsaicin stimulation result in distinct phosphorylation patterns of heat shock factor 1 (HSF1), with phosphorylation at serine 326 being a common feature. Notably, genetic manipulation to mimic dephosphorylation of HSF1 at serine 326 reduces HSP27 levels. Additionally, ΔNp63, a key regulator of epidermal differentiation, negatively modulates HSP27 expression independently of HSF1 phosphorylation status. While heat stimulation has no effect on ΔNp63 expression, capsaicin reduces its levels. The precise role of TRPV1 signaling in keratinocytes warrants further investigation for a comprehensive understanding of its impact on barrier function.


Asunto(s)
Capsaicina , Proteínas de Choque Térmico HSP27 , Humanos , Proteínas de Choque Térmico HSP27/genética , Proteínas de Choque Térmico HSP27/metabolismo , Capsaicina/farmacología , Fosforilación , Serina/metabolismo , Rayos Ultravioleta , Proteínas de Choque Térmico/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Queratinocitos/metabolismo , Respuesta al Choque Térmico , Factores de Transcripción del Choque Térmico/metabolismo
7.
Cancers (Basel) ; 16(2)2024 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-38254754

RESUMEN

To study the inhibitory effects on microphthalmia-associated transcription factor (MITF)-related biological aspects in malignant melanomas (MMs) in the presence or absence of the low-molecular MITF specific inhibitor ML329, cell viability, cellular metabolic functions, and three-dimensional (3D) spheroid formation efficacy were compared among MM cell lines including SK-mel-24, A375, dabrafenib- and trametinib-resistant A375 (A375DT), and WM266-4. Upon exposure to 2 or 10 µM of ML329, cell viability was significantly decreased in WM266-4, SK-mel-24, and A375DT cells, but not A375 cells, in a dose-dependent manner, and these toxic effects of ML329 were most evident in WM266-4 cells. Extracellular flux assays conducted using a Seahorse bioanalyzer revealed that treatment with ML329 increased basal respiration, ATP-linked respiration, proton leakage, and non-mitochondrial respiration in WM266-4 cells and decreased glycolytic function in SK-mel-24 cells, whereas there were no marked effects of ML329 on A375 and A375DT cells. A glycolytic stress assay under conditions of high glucose concentrations also demonstrated that the inhibitory effect of ML329 on the glycolytic function of WM266-4 cells was dose-dependent. In addition, ML329 significantly decreased 3D-spheroid-forming ability, though the effects of ML329 were variable among the MM cell lines. Furthermore, the mRNA expression levels of selected genes, including STAT3 as a possible regulator of 3D spheroid formation, KRAS and SOX2 as oncogenic-signaling-related factors, PCG1a as the main regulator of mitochondrial biogenesis, and HIF1a as a major hypoxia transcriptional regulator, fluctuated among the MM cell lines, possibly supporting the diverse ML329 effects mentioned above. The findings of diverse ML329 effects on various MM cell lines suggest that MITF-associated biological activities are different among various types of MM.

8.
J Dermatol ; 51(3): 409-418, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37658676

RESUMEN

The efficacy of combination therapy with an immune checkpoint inhibitor (ICI) and cytotoxic chemotherapeutic agents has been investigated in cancer, including melanoma. Before ICIs were introduced, dacarbazine or temozolomide (TMZ) were used to treat melanoma. Several studies using glioma or colorectal cancer cells showed that TMZ can increase the tumor mutation burden (TMB) and induce mismatch repair (MMR) deficiency associated with microsatellite instability (MSI). These could increase immunoreactivity to an ICI, but this has not been evaluated in melanoma cells. We investigated the effects of TMZ on MSI status and TMB in melanoma cells. To evaluate the TMB, we performed whole-exome sequencing using genomic DNA from the human melanoma cell lines Mel18, A375, WM266-4, G361, and TXM18 before and after TMZ treatment. Polymerase chain reaction amplification of five mononucleotide repeat markers, BAT25, BAT26, NR21, NR24, and MONO27, was performed, and we analyzed changes in the MSI status. In all cell lines, the TMB was increased after TMZ treatment (the change amount of TMB with ≤ 5% variant allele frequency [VAF] was 18.0-38.3 mutations per megabase) even in the condition without obvious cytological damage. MSI after TMZ treatment was not observed in any cells. TMZ increased TMB but did not change MSI status in melanoma cells.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Colorrectales , Melanoma , Síndromes Neoplásicos Hereditarios , Humanos , Inestabilidad de Microsatélites , Temozolomida/farmacología , Temozolomida/uso terapéutico , Melanoma/tratamiento farmacológico , Melanoma/genética , Reparación de la Incompatibilidad de ADN/genética , Neoplasias Colorrectales/genética , Mutación , Repeticiones de Microsatélite/genética , Biomarcadores de Tumor/genética
13.
Cells ; 12(5)2023 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-36899895

RESUMEN

To study the molecular mechanisms responsible for inducing the spatial proliferation of malignant melanomas (MM), three-dimension (3D) spheroids were produced from several MM cell lines including SK-mel-24, MM418, A375, WM266-4, and SM2-1, and their 3D architectures and cellular metabolisms were evaluated by phase-contrast microscopy and Seahorse bio-analyzer, respectively. Several transformed horizontal configurations were observed within most of these 3D spheroids, and the degree of their deformity was increased in the order: WM266-4, SM2-1, A375, MM418, and SK-mel-24. An increased maximal respiration and a decreased glycolytic capacity were observed within the lesser deformed two MM cell lines, WM266-4 and SM2-1, as compared with the most deformed ones. Among these MM cell lines, two distinct cell lines, WM266-4 and SK-mel-24, whose 3D appearances were the closest and farthest, respectively, from being horizontally circular-shaped, were subjected to RNA sequence analyses. Bioinformatic analyses of the differentially expressed genes (DEGs) identified KRAS and SOX2 as potential master regulatory genes for inducing these diverse 3D configurations between WM266-4 and SK-mel-24. The knockdown of both factors altered the morphological and functional characteristics of the SK-mel-24 cells, and in fact, their horizontal deformity was significantly reduced. A qPCR analysis indicated that the levels of several oncogenic signaling related factors, including KRAS and SOX2, PCG1α, extracellular matrixes (ECMs), and ZO1 had fluctuated among the five MM cell lines. In addition, and quite interestingly, the dabrafenib and trametinib resistant A375 (A375DT) cells formed globe shaped 3D spheroids and showed different profiles in cellular metabolism while the mRNA expression of these molecules that were tested as above were different compared with A375 cells. These current findings suggest that 3D spheroid configuration has the potential for serving as an indicator of the pathophysiological activities associated with MM.


Asunto(s)
Melanoma , Proteínas Proto-Oncogénicas p21(ras) , Humanos , Línea Celular Tumoral , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Melanoma/patología
15.
Cancers (Basel) ; 14(22)2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36428680

RESUMEN

Malignant melanoma is one of the most malignant of all cancers. Melanoma occurs at the epidermo-dermal interface of the skin and mucosa, where small vessels and lymphatics are abundant. Consequently, from the onset of the disease, melanoma easily metastasizes to other organs throughout the body via lymphatic and blood circulation. At present, the most effective treatment method is surgical resection, and other attempted methods, such as chemotherapy, radiotherapy, immunotherapy, targeted therapy, and gene therapy, have not yet produced sufficient results. Since melanogenesis is a unique biochemical pathway that functions only in melanocytes and their neoplastic counterparts, melanoma cells, the development of drugs that target melanogenesis is a promising area of research. Melanin consists of small-molecule derivatives that are always synthesized by melanoma cells. Amelanosis reflects the macroscopic visibility of color changes (hypomelanosis). Under microscopy, melanin pigments and their precursors are present in amelanotic melanoma cells. Tumors can be easily targeted by small molecules that chemically mimic melanogenic substrates. In addition, small-molecule melanin metabolites are toxic to melanocytes and melanoma cells and can kill them. This review describes our development of chemo-thermo-immunotherapy based on the synthesis of melanogenesis-based small-molecule derivatives and conjugation to magnetite nanoparticles. We also introduce the other melanogenesis-related chemotherapy and thermal medicine approaches and discuss currently introduced targeted therapies with immune checkpoint inhibitors for unresectable/metastatic melanoma.

16.
J Invest Dermatol ; 142(12): 3222-3231.e5, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35850207

RESUMEN

Complex interactions between keratinocytes and various cell types, such as inflammatory cells and stromal cells, contribute to the pathogenesis of chronic inflammatory skin lesions. In proinflammatory cytokine‒mediated disease settings, IL-9 plays a pathological role in inflammatory dermatitis. However, IL-9‒related mechanisms remain incompletely understood. In this study, we established tamoxifen-induced keratinocyte-specific IL-9RA-deficient mice (K14CRE/ERTIl9raΔ/Δ mice) to examine the role of IL-9 in multicellular interactions under chronic skin inflammatory conditions. Studies using an imiquimod-induced psoriasis-like model showed that K14CRE/ERTIl9raΔ/Δ mice exhibited a significantly reduced severity of dermatitis and mast cell infiltration compared with control K14WTIl9rafl/fl mice. Transcriptome analyses of psoriasis-like lesions showed that the level of peptide Y-Y (Pyy), a member of the neuropeptide Y family, was markedly downregulated in K14CRE/ERTIl9raΔ/Δ epidermis. Pyy blockade suppressed epidermal thickening and mast cell numbers in imiquimod-treated wild-type mice. Together with in vitro studies indicating that Pyy induced IL-9 production and chemotactic activity in bone marrow‒derived mast cells, these findings suggest that Pyy-mediated interplay between keratinocytes and mast cells contributes to psoriasiform inflammation. Further investigation focusing on the IL-9‒Pyy axis may provide valuable information for the development of new treatment modalities for inflammatory dermatitis.


Asunto(s)
Dermatitis , Interleucina-9 , Péptido YY , Psoriasis , Animales , Ratones , Dermatitis/patología , Modelos Animales de Enfermedad , Imiquimod , Inflamación/patología , Interleucina-9/genética , Interleucina-9/metabolismo , Queratinocitos/metabolismo , Péptido YY/genética , Péptido YY/metabolismo , Psoriasis/metabolismo , Piel/patología
18.
Int J Clin Oncol ; 27(8): 1364-1371, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35650364

RESUMEN

BACKGROUND: The immunohistochemical evaluation of programmed death ligand 1 (PD-L1) is important for selecting treatments. Several antibodies are available for such evaluations, but data regarding the differences in the antibodies' positivity are limited in melanoma, particularly the acral and mucosal types. We investigated the differences in melanoma tissues' PD-L1 expression among the commonly used PD-L1 antibodies and then evaluated the relationship between PD-L1+ tumor cells and tumor-infiltrating lymphocytes (TILs). PATIENTS AND METHODS: We examined 56 primary lesions and 8 metastatic lymph node samples from 56 Japanese patients with melanoma (28 acral melanoma, 8 mucosal melanoma, 18 cutaneous melanoma, 2 unknown). Immunohistochemical staining was performed using three primary antibodies against PD-L1 (E1L3N, SP142, and 28-8). PD-L1-positive staining in tumor cells was defined as ≥ 1% expression. RESULTS: The positive rates were 25.0% for 28-8, 34.0% for E1L3N, and 34.0% for SP142 in 64 samples. The positive rates of acral melanoma were 10.7% for 28-8, 21.4% for E1L3N, and 21.4% for SP142. The positive rate of mucosal melanoma for which all three antibodies reacted was 12.5%. The positive rates of cutaneous melanoma were 55.6% for 28-8, 66.7% for E1L3N, and 66.7% for SP142. Significant relationships were observed among the PD-L1+ tumor cells, CD4+ TILs, and CD8+ TILs (p < 0.001). CONCLUSION: The staining results by E1L3N, SP142, and 28-8 antibodies were within the allowable range, although the positive rates by E1L3N and P142 were slightly higher than that of 28-8. CD4+ TILs and CD8+ TILs were quantitatively correlated with PD-L1-positive tumor cells.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Anticuerpos , Antígeno B7-H1/metabolismo , Biomarcadores de Tumor , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos , Humanos , Inmunohistoquímica , Japón , Linfocitos Infiltrantes de Tumor/patología , Melanoma/patología , Neoplasias Cutáneas/patología , Melanoma Cutáneo Maligno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...