Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 14178, 2024 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898058

RESUMEN

Increasing evidence supports the hypothesis that cancer progression is under mitochondrial control. Mitochondrial fission plays a pivotal role in the maintenance of cancer cell homeostasis. The inhibition of DRP1, the main regulator of mitochondrial fission, with the mitochondrial division inhibitor (mdivi-1) had been associated with cancer cell sensitivity to chemotherapeutics and decrease proliferation. Here, using breast cancer cells we find that mdivi-1 induces the detachment of the cells, leading to a bulk of floating cells that conserved their viability. Despite a decrease in their proliferative and clonogenic capabilities, these floating cells maintain the capacity to re-adhere upon re-seeding and retain their migratory and invasive potential. Interestingly, the cell detachment induced by mdivi-1 is independent of DRP1 but relies on inhibition of mitochondrial complex I. Furthermore, mdivi-1 induces cell detachment rely on glucose and the pentose phosphate pathway. Our data evidence a novel DRP1-independent effect of mdivi-1 in the attachment of cancer cells. The generation of floating viable cells restricts the use of mdivi-1 as a therapeutic agent and demonstrates that mdivi-1 effect on cancer cells are more complex than anticipated.


Asunto(s)
Neoplasias de la Mama , Dinaminas , Matriz Extracelular , Dinámicas Mitocondriales , Quinazolinonas , Humanos , Dinaminas/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/tratamiento farmacológico , Femenino , Matriz Extracelular/metabolismo , Matriz Extracelular/efectos de los fármacos , Línea Celular Tumoral , Quinazolinonas/farmacología , Dinámicas Mitocondriales/efectos de los fármacos , Adhesión Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos
2.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732154

RESUMEN

The diagnosis of cardiovascular disease (CVD) is still limited. Therefore, this study demonstrates the presence of human ether-a-go-go-related gene 1 (hERG1) and heat shock protein 47 (Hsp47) on the surface of small extracellular vesicles (sEVs) in human peripheral blood and their association with CVD. In this research, 20 individuals with heart failure and 26 participants subjected to cardiac stress tests were enrolled. The associations between hERG1 and/or Hsp47 in sEVs and CVD were established using Western blot, flow cytometry, electron microscopy, ELISA, and nanoparticle tracking analysis. The results show that hERG1 and Hsp47 were present in sEV membranes, extravesicularly exposing the sequences 430AFLLKETEEGPPATE445 for hERG1 and 169ALQSINEWAAQTT- DGKLPEVTKDVERTD196 for Hsp47. In addition, upon exposure to hypoxia, rat primary cardiomyocytes released sEVs into the media, and human cardiomyocytes in culture also released sEVs containing hERG1 (EV-hERG1) and/or Hsp47 (EV-Hsp47). Moreover, the levels of sEVs increased in the blood when cardiac ischemia was induced during the stress test, as well as the concentrations of EV-hERG1 and EV-Hsp47. Additionally, the plasma levels of EV-hERG1 and EV-Hsp47 decreased in patients with decompensated heart failure (DHF). Our data provide the first evidence that hERG1 and Hsp47 are present in the membranes of sEVs derived from the human cardiomyocyte cell line, and also in those isolated from human peripheral blood. Total sEVs, EV-hERG1, and EV-Hsp47 may be explored as biomarkers for heart diseases such as heart failure and cardiac ischemia.


Asunto(s)
Biomarcadores , Enfermedades Cardiovasculares , Vesículas Extracelulares , Proteínas del Choque Térmico HSP47 , Miocitos Cardíacos , Humanos , Vesículas Extracelulares/metabolismo , Biomarcadores/sangre , Masculino , Enfermedades Cardiovasculares/metabolismo , Femenino , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Persona de Mediana Edad , Animales , Proteínas del Choque Térmico HSP47/metabolismo , Ratas , Canal de Potasio ERG1/metabolismo , Anciano , Adulto , Canales de Potasio Éter-A-Go-Go/metabolismo , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/sangre
3.
Methods Protoc ; 7(3)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38804337

RESUMEN

Intestinal macrophages have been poorly studied in fish, mainly due to the lack of specific molecular markers for their identification and isolation. To address this gap, using the zebrafish Tg(mpeg1:EGFP) transgenic line, we developed a fluorescence-activated cell sorting strategy (FACS) that allows us to isolate different intestinal macrophage subpopulations, based on GFP expression and morphological differences. Also, we achieved the purification of high-quality total RNA from each population to perform transcriptomic analysis. The complete strategy comprises three steps, including intestine dissection and tissue dissociation, the isolation of each intestinal macrophage population via FACS, and the extraction of total RNA. To be able to characterize molecularly different macrophage subpopulations and link them to their functional properties will allow us to unravel intestinal macrophage biology.

4.
Stem Cells Transl Med ; 13(3): 193-203, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38366909

RESUMEN

Osteoarthritis (OA) is the most common degenerative joint disease. Mesenchymal stromal cells (MSC) are promising cell-based therapy for OA. However, there is still a need for additional randomized, dose-dependent studies to determine the optimal dose and tissue source of MSC for improved clinical outcomes. Here, we performed a dose-dependant evaluation of umbilical cord (UC)-derived MSC (Celllistem) in a murine model and in knee OA patients. For the preclinical study, a classical dose (200.000 cells) and a lower dose (50.000 cells) of Cellistem were intra-articularly injected into the mice knee joints. The results showed a dose efficacy response effect of Cellistem associated with a decreased inflammatory and degenerative response according to the Pritzker OARSI score. Following the same approach, the dose-escalation phase I clinical trial design included 3 sequential cohorts: low-dose group (2 × 106 cells), medium-dose group (20 × 106), and high-dose group (80 × 106). All the doses were safe, and no serious adverse events were reported. Nonetheless, 100% of the patients injected with the high-dose experienced injection-related swelling in the knee joint. According to WOMAC total outcomes, patients treated with all doses reported significant improvements in pain and function compared with baseline after 3 and 6 months. However, the improvements were higher in patients treated with both medium and low dose as compared to high dose. Therefore, our data demonstrate that the intra-articular injection of different doses of Cellistem is both safe and efficient, making it an interesting therapeutic alternative to treat mild and symptomatic knee OA patients. Trial registration ClinicalTrials.gov NCT03810521.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Osteoartritis de la Rodilla , Animales , Humanos , Ratones , Inyecciones Intraarticulares , Trasplante de Células Madre Mesenquimatosas/efectos adversos , Trasplante de Células Madre Mesenquimatosas/métodos , Osteoartritis de la Rodilla/terapia , Resultado del Tratamiento , Cordón Umbilical
5.
Front Cell Dev Biol ; 11: 1031331, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36793446

RESUMEN

Background: Treatment for critical care conditions, such as acute respiratory distress syndrome (ARDS), requires ready-to-administer injectable mesenchymal stromal cells (MSCs). A validated cryopreserved therapy based on MSCs derived from menstrual blood (MenSCs) is an attractive option that offers advantages over freshly cultured cells and allows its use as an off-the-shelf therapy in acute clinical conditions. The main goal of this study is to provide evidence on the impact of cryopreservation on different biological functions of MenSCs and to determine the optimal therapeutic dose, safety, and efficacy profile of clinical-grade, cryopreserved (cryo)-MenSCs in experimental ARDS. Methods: Biological functions of fresh versus cryo-MenSCs were compared in vitro. The effects of cryo-MenSCs therapy were evaluated in vivo in ARDS-induced (Escherichia coli lipopolysaccharide) C57BL/6 mice. After 24 h, the animals were treated with five doses ranging from 0.25×105 to 1.25×106 cells/animal. At 2 and 7 days after induction of ARDS, safety and efficacy were evaluated. Results: Clinical-grade cryo-MenSCs injections improved lung mechanics and reduced alveolar collapse, tissue cellularity, and remodelling, decreasing elastic and collagen fiber content in alveolar septa. In addition, administration of these cells modulated inflammatory mediators and promoted pro-angiogenic and anti-apoptotic effects in lung-injured animals. More beneficial effects were observed with an optimal dose of 4×106 cells/Kg than with higher or lower doses. Conclusion: From a translational perspective, the results showed that clinical-grade cryopreserved MenSCs retain their biological properties and exert a therapeutic effect in mild to moderate experimental ARDS. The optimal therapeutic dose was well-tolerated, safe, and effective, favouring improved lung function. These findings support the potential value of an off-the-shelf MenSCs-based product as a promising therapeutic strategy for treating ARDS.

6.
Front Cell Dev Biol ; 11: 1324158, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38283990

RESUMEN

Introduction: An active role of platelets in the progression of triple-negative breast cancer (TNBC) cells has been described. Even the role of platelet-derived extracellular vesicles on the migration of MDA-MB-231 cells has been reported. Interestingly, upon activation, platelets release functional mitochondria into the extracellular environment. However, the impact of these platelet-derived mitochondria on the metabolic properties of MDA-MB-231 cells remains unclear. Methods: MDA-MB-231 and MDA-MB-231-Rho-0 cells were co-cultured with platelets, which were isolated from donor blood. Mitochondrial transfer was assessed through confocal microscopy and flow cytometry, while metabolic analyses were conducted using a Seahorse XF HS Mini Analyzer. The mito-chondrial DNA (mtDNA) copy number was determined via quantitative PCR (qPCR) following platelet co-culture. Finally, cell proliferation and colony formation assay were performed using crystal violet staining. Results and Discussion: We have shown that platelet-derived mitochondria are internalized by MDA-MB-231 cells in co-culture with platelets, increasing ATP production, oxygen (O2) consumption rate (OCR), cell proliferation, and metabolic adaptability. Additionally, we observed that MDA-MB-231 cells depleted from mtDNA restore cell proliferation in uridine/pyruvate-free cell culture medium and mitochondrial O2 consumption after co-culture with platelets, indicating a reconstitution of mtDNA facilitated by platelet-derived mitochondria. In conclusion, our study provides new insights into the role of platelet-derived mitochondria in the metabolic adaptability and progression of metastatic MDA-MB-231 TNBC cells.

7.
Cell Mol Life Sci ; 79(3): 177, 2022 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-35247083

RESUMEN

There is a steadily growing interest in the use of mitochondria as therapeutic agents. The use of mitochondria derived from mesenchymal stem/stromal cells (MSCs) for therapeutic purposes represents an innovative approach to treat many diseases (immune deregulation, inflammation-related disorders, wound healing, ischemic events, and aging) with an increasing amount of promising evidence, ranging from preclinical to clinical research. Furthermore, the eventual reversal, induced by the intercellular mitochondrial transfer, of the metabolic and pro-inflammatory profile, opens new avenues to the understanding of diseases' etiology, their relation to both systemic and local risk factors, and also leads to new therapeutic tools for the control of inflammatory and degenerative diseases. To this end, we illustrate in this review, the triggers and mechanisms behind the transfer of mitochondria employed by MSCs and the underlying benefits as well as the possible adverse effects of MSCs mitochondrial exchange. We relay the rationale and opportunities for the use of these organelles in the clinic as cell-based product.


Asunto(s)
Mitocondrias/metabolismo , Tratamiento Basado en Trasplante de Células y Tejidos , Humanos , Enfermedades Pulmonares/terapia , Macrófagos/citología , Macrófagos/inmunología , Macrófagos/metabolismo , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Mitocondrias/trasplante , Dinámicas Mitocondriales , Comunicación Paracrina
8.
Front Immunol ; 12: 766698, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34790201

RESUMEN

The thymus is home to a significant number of resident B cells which possess several unique characteristics regarding their origin, phenotype and function. Evidence shows that they originate both from precursors that mature intrathymically and as the entry of recirculating mature B cells. Under steady-state conditions they exhibit hallmark signatures of activated B cells, undergo immunoglobulin class-switch, and express the Aire transcription factor. These features are imprinted within the thymus and enable B cells to act as specialized antigen-presenting cells in the thymic medulla that contribute negative selection of self-reactive T cells. Though, most studies have focused on B cells located in the medulla, a second contingent of B cells is also present in non-epithelial perivascular spaces of the thymus. This latter group of B cells, which includes memory B cells and plasma cells, is not readily detected in the thymus of infants or young mice but gradually accumulates during normal aging. Remarkably, in many autoimmune diseases the thymus suffers severe structural atrophy and infiltration of B cells in the perivascular spaces, which organize into follicles similar to those typically found in secondary lymphoid organs. This review provides an overview of the pathways involved in thymic B cell origin and presents an integrated view of both thymic medullary and perivascular B cells and their respective physiological and pathological roles in central tolerance and autoimmune diseases.


Asunto(s)
Autoinmunidad/inmunología , Linfocitos B/inmunología , Tolerancia Inmunológica/inmunología , Activación de Linfocitos/inmunología , Timo/inmunología , Animales , Linfocitos B/citología , Linfocitos B/metabolismo , Movimiento Celular/inmunología , Humanos , Células Plasmáticas/inmunología , Células Plasmáticas/metabolismo , Timo/citología , Timo/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/inmunología , Factores de Transcripción/metabolismo , Proteína AIRE
9.
Front Bioeng Biotechnol ; 9: 619930, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34124014

RESUMEN

Cell therapy is witnessing a notable shift toward cell-free treatments based on paracrine factors, in particular, towards small extracellular vesicles (sEV), that mimic the functional effect of the parental cells. While numerous sEV-based applications are currently in advanced preclinical stages, their promised translation depends on overcoming the manufacturing hurdles posed by the large-scale production of purified sEV. Unquestionably, the culture medium used with the parental cells plays a key role in the sEV's secretion rate and content. An essential requisite is the use of a serum-, xeno-, and blood-free medium to meet the regulatory entity requirements of clinical-grade sEV's production. Here, we evaluated OxiumTMEXO, a regulatory complying medium, with respect to production capacity and conservation of the EV's characteristics and functionality and the parental cell's phenotype and viability. A comparative study was established with standard DMEM and a commercially available culture medium developed specifically for sEV production. Under similar conditions, OxiumTMEXO displayed a three-fold increase of sEV secretion, with an enrichment of particles ranging between 51 and 200 nm. These results were obtained through direct quantification from the conditioned medium to avoid the isolation method's interference and variability and were compared to the two culture media under evaluation. The higher yield obtained was consistent with several harvest time points (2, 4, and 6 days) and different cell sources, incluiding umbilical cord-, menstrual blood-derived mesenchymal stromal cells and fibroblasts. Additionally, the stem cell phenotype and viability of the parental cell remained unchanged. Furthermore, OxiumTMEXO-sEV showed a similar expression pattern of the vesicular markers CD63, CD9, and CD81, with respect to sEV derived from the other conditions. The in vitro internalization assays in different target cell types and the pharmacokinetic profile of intraperitoneally administered sEV in vivo indicated that the higher EV production rate did not affect the uptake kinetics or the systemic biodistribution in healthy mice. In conclusion, the OxiumTMEXO medium sustains an efficient and robust production of large quantities of sEV, conserving the classic functional properties of internalization into acceptor target cells and biodistribution in vivo, supplying the amount and quality of EVs for the development of cell-free therapies.

10.
Sci Rep ; 10(1): 15064, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32934247

RESUMEN

Impaired wound healing complicates a wide range of diseases and represents a major cost to healthcare systems. Here we describe the use of discarded wound dressings as a novel, cost effective, accessible, and non-invasive method of isolating viable human cells present at the site of skin wounds. By analyzing 133 discarded wound dressings from 51 patients with the inherited skin-blistering disease epidermolysis bullosa (EB), we show that large numbers of cells, often in excess of 100 million per day, continually infiltrate wound dressings. We show, that the method is able to differentiate chronic from acute wounds, identifying significant increases in granulocytes in chronic wounds, and we show that patients with the junctional form of EB have significantly more cells infiltrating their wounds compared with patients with recessive dystrophic EB. Finally, we identify subsets of granulocytes and T lymphocytes present in all wounds paving the way for single cell profiling of innate and adaptive immune cells with relevance to wound pathologies. In summary, our study delineates findings in EB that have potential relevance for all chronic wounds, and presents a method of cellular isolation that has wide reaching clinical application.


Asunto(s)
Vendajes , Separación Celular , Epidermólisis Ampollosa , Granulocitos , Linfocitos T , Cicatrización de Heridas , Enfermedad Aguda , Adulto , Enfermedad Crónica , Epidermólisis Ampollosa/metabolismo , Epidermólisis Ampollosa/patología , Epidermólisis Ampollosa/terapia , Granulocitos/metabolismo , Granulocitos/patología , Humanos , Masculino , Linfocitos T/metabolismo , Linfocitos T/patología
11.
Front Immunol ; 11: 696, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32411134

RESUMEN

Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the activation of autoreactive T and B cells, autoantibody production, and immune complex deposition in various organs. Previous evidence showed abnormal accumulation of B cells in the thymus of lupus-prone mice, but the role of this population in the progression of the disease remains mostly undefined. Here we analyzed the spatial distribution, function, and properties of this thymic B cell population in the BWF1 murine model of SLE. We found that in diseased animals, thymic B cells proliferate, and cluster in structures that resemble ectopic germinal centers. Moreover, we detected antibody-secreting cells in the thymus of diseased-BWF1 mice that produce anti-dsDNA IgG autoantibodies. We also found that thymic B cells from diseased-BWF1 mice induced the differentiation of thymocytes to follicular helper T cells (TFH). These data suggest that the accumulation of B cells in the thymus of BWF1 mice results in the formation of germinal center-like structures and the expansion of a TFH population, which may, in turn, activate and differentiate B cells into autoreactive plasma cells. Therefore, the thymus emerges as an important niche that supports the maintenance of the pathogenic humoral response in the development of murine SLE.


Asunto(s)
Linfocitos B/inmunología , Centro Germinal/inmunología , Inmunidad Humoral , Lupus Eritematoso Sistémico/inmunología , Células T Auxiliares Foliculares/inmunología , Timo/inmunología , Animales , Autoanticuerpos/inmunología , Diferenciación Celular , Células Cultivadas , Técnicas de Cocultivo , ADN/inmunología , Modelos Animales de Enfermedad , Femenino , Activación de Linfocitos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos NZB , Células Plasmáticas/inmunología
12.
Immunol Res ; 65(4): 957-968, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28741259

RESUMEN

Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by increased autoantibody production that leads to multiple tissue injuries. Dendritic cells (DCs) are important orchestrators of immune responses and key components in fine-tuning the balance between tolerance and immunity. However, their role in autoimmune disorders such as SLE remains uncertain. We analyzed the contribution of DCs in triggering SLE by adoptively transferring splenic DCs from aged autoimmune [NZB×NZW]F1 (BWF1) mice to young healthy BWF1 mice. We observed that the transfer of DCs from autoimmune mice to pre-autoimmune mice induced high autoantibody titers in the serum of recipient mice. Moreover, autoimmune DCs from aged BWF1 mice were crucial for the expansion and differentiation of plasmablasts and CD5+ B cells or B1-like cells in the peripheral blood, and spleen of recipient BWF1 mice, a phenomenon that is observed in autoimmune BWF1 mice. On the other hand, DCs from aged BWF1 mice participated in the expansion and differentiation of DCs and IFN-γ-producing T cells. These results reveal that DCs from autoimmune BWF1 mice exhibit functional and phenotypic characteristics that allow them to trigger B cell hyperactivation, as well as DC and T cell expansion and differentiation, thereby promoting an exacerbated humoral response in lupus-prone mice.


Asunto(s)
Envejecimiento/fisiología , Linfocitos B/inmunología , Células Dendríticas/inmunología , Lupus Eritematoso Sistémico/inmunología , Bazo/patología , Linfocitos T/inmunología , Traslado Adoptivo , Animales , Autoanticuerpos/metabolismo , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Células Dendríticas/trasplante , Humanos , Inmunidad Humoral , Interferón gamma/metabolismo , Activación de Linfocitos , Ratones , Ratones Endogámicos NZB
13.
PLoS One ; 11(6): e0157889, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27322617

RESUMEN

T helper type 17 (Th17) lymphocytes, characterized by the production of interleukin-17 and other pro-inflammatory cytokines, are present in intestinal lamina propria and have been described as important players driving intestinal inflammation. Recent evidence, supporting the notion of a functional and phenotypic instability of Th17 cells, has shown that Th17 differentiate into type 1 regulatory (Tr1) T cells during the resolution of intestinal inflammation. Moreover, it has been suggested that the expression of CD39 ectonucleotidase endows Th17 cells with immunosuppressive properties. However, the exact role of CD39 ectonucleotidase in Th17 cells has not been studied in the context of intestinal inflammation. Here we show that Th17 cells expressing CD39 ectonucleotidase can hydrolyze ATP and survive to ATP-induced cell death. Moreover, in vitro-generated Th17 cells expressing the CD39 ectonucleotidase produce IL-10 and are less pathogenic than CD39 negative Th17 cells in a model of experimental colitis in Rag-/- mice. Remarkably, we show that CD39 activity regulates the conversion of Th17 cells to IL-10-producing cells in vitro, which is abrogated in the presence of ATP and the CD39-specific inhibitor ARL67156. All these data suggest that CD39 expression by Th17 cells allows the depletion of ATP and is crucial for IL-10 production and survival during the resolution of intestinal inflammation.


Asunto(s)
Antígenos CD/metabolismo , Apirasa/metabolismo , Receptores Purinérgicos/metabolismo , Transducción de Señal , Células Th17/inmunología , 5'-Nucleotidasa/metabolismo , Adenosina Trifosfato/farmacología , Animales , Muerte Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Colitis/inmunología , Colitis/patología , Hidrólisis , Inflamación/patología , Interferón gamma/metabolismo , Interleucina-10/metabolismo , Interleucina-23/metabolismo , Intestinos/patología , Ratones Endogámicos C57BL , Fenotipo , Factor de Crecimiento Transformador beta1/metabolismo
14.
Sci Immunol ; 1(6)2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28459117

RESUMEN

The human thymus is susceptible to viral infections that can severely alter thymopoiesis and compromise the mechanisms of acquired tolerance to self-antigens. In humans, plasma cells residing primarily in the bone marrow confer long-lasting protection to common viruses by secreting antigen-specific antibodies. Since the thymus also houses B cells, we examined the phenotypic complexity of these thymic resident cells and their possible protective role against viral infections. Using tissue specimens collected from subjects ranging in age from 5 days to 71 years, we found that starting during the first year of life, CD138+ plasma cells (PC) begin accumulating in the thymic perivascular space (PVS) where they constitutively produce IgG without the need for additional stimulation. These, thymic PC secrete almost exclusively IgG1 and IgG3, the two main complement-fixing effector IgG subclasses. Moreover, using antigen-specific ELISpot assays, we demonstrated that thymic PC include a high frequency of cells reactive to common viral proteins. Our study reveals an unrecognized role of the PVS as a functional niche for viral-specific PCs. The PVS is located between the thymic epithelial areas and the circulation. PCs located in this compartment may therefore provide internal protection against pathogen infections and preserve the integrity and function of the organ.

15.
Front Immunol ; 6: 596, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26635810

RESUMEN

The induction of donor-specific transplant tolerance is one of the main goals of modern immunology. Establishment of a mixed chimerism state in the transplant recipient has proven to be a suitable strategy for the induction of long-term allograft tolerance; however, current experimental recipient preconditioning protocols have many side effects, and are not feasible for use in future therapies. In order to improve the current mixed chimerism induction protocols, we developed a non-myeloablative bone-marrow transplant (NM-BMT) protocol using retinoic acid (RA)-induced alloantigen-specific Tregs, clinically available immunosuppressive drugs, and lower doses of irradiation. We demonstrate that RA-induced alloantigen-specific Tregs in addition to a NM-BMT protocol generates stable mixed chimerism and induces tolerance to allogeneic secondary skin allografts in mice. Therefore, the establishment of mixed chimerism through the use of donor-specific Tregs rather than non-specific immunosuppression could have a potential use in organ transplantation.

16.
Biomed Res Int ; 2015: 137893, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26583087

RESUMEN

Maintaining the identity of Foxp3(+) regulatory T cells (Tregs) is critical for controlling immune responses in the gut, where an imbalance between Tregs and T effector cells has been linked to inflammatory bowel disease. Accumulating evidence suggests that Tregs can convert into Th17 cells and acquire an inflammatory phenotype. In this study, we used an adoptive transfer model of Ag-specific T cells to study the contribution of different factors to the reprogramming of in vitro-generated Treg cells (iTreg) into IL-17-producing cells in a mouse model of gut inflammation in vivo. Our results show that intestinal inflammation induces the reprogramming of iTreg cells into IL-17-producing cells and that vitamin A restrains reprogramming in the gut. We also demonstrate that the presence of IL-2 during the in vitro generation of iTreg cells confers resistance to Th17 conversion but that IL-2 and retinoic acid (RA) cooperate to maintain Foxp3 expression following stimulation under Th17-polarizing conditions. Additionally, although IL-2 and RA differentially regulate the expression of different Treg cell suppressive markers, Treg cells generated under different polarizing conditions present similar suppressive capacity.


Asunto(s)
Inflamación/genética , Interleucina-17/biosíntesis , Linfocitos T Reguladores/inmunología , Células Th17/inmunología , Vitamina A/administración & dosificación , Animales , Linaje de la Célula/efectos de los fármacos , Linaje de la Célula/inmunología , Reprogramación Celular/genética , Reprogramación Celular/inmunología , Factores de Transcripción Forkhead/biosíntesis , Factores de Transcripción Forkhead/genética , Regulación del Desarrollo de la Expresión Génica , Humanos , Inmunidad Celular/genética , Inflamación/inmunología , Interleucina-17/inmunología , Interleucina-2/inmunología , Mucosa Intestinal/metabolismo , Intestinos/patología , Ratones , Linfocitos T Reguladores/efectos de los fármacos , Células Th17/patología , Tretinoina/administración & dosificación
17.
Eur J Immunol ; 45(2): 452-63, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25381698

RESUMEN

CD4(+) CD25(+) Foxp3(+) regulatory T (Treg) cells mediate immunological self-tolerance and suppress immune responses. Retinoic acid (RA), a natural metabolite of vitamin A, has been reported to enhance the differentiation of Treg cells in the presence of TGF-ß. In this study, we show that the co-culture of naive T cells from C57BL/6 mice with allogeneic antigen-presenting cells (APCs) from BALB/c mice in the presence of TGF-ß, RA, and IL-2 resulted in a striking enrichment of Foxp3(+) T cells. These RA in vitro-induced regulatory T (RA-iTreg) cells did not secrete Th1-, Th2-, or Th17-related cytokines, showed a nonbiased homing potential, and expressed several cell surface molecules related to Treg-cell suppressive potential. Accordingly, these RA-iTreg cells suppressed T-cell proliferation and inhibited cytokine production by T cells in in vitro assays. Moreover, following adoptive transfer, RA-iTreg cells maintained Foxp3 expression and their suppressive capacity. Finally, RA-iTreg cells showed alloantigen-specific immunosuppressive capacity in a skin allograft model in immunodeficient mice. Altogether, these data indicate that functional and stable allogeneic-specific Treg cells may be generated using TGF-ß, RA, and IL-2. Thus, RA-iTreg cells may have a potential use in the development of more effective cellular therapies in clinical transplantation.


Asunto(s)
Rechazo de Injerto/prevención & control , Trasplante de Piel , Piel/inmunología , Linfocitos T Reguladores/inmunología , Tretinoina/farmacología , Traslado Adoptivo , Aloinjertos , Animales , Técnicas de Cocultivo , Células Dendríticas/citología , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/inmunología , Expresión Génica , Supervivencia de Injerto , Interleucina-2/farmacología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Ovalbúmina/administración & dosificación , Piel/citología , Bazo/citología , Bazo/inmunología , Linfocitos T Reguladores/citología , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/trasplante , Factor de Crecimiento Transformador beta/farmacología
18.
Clin Dev Immunol ; 2013: 210506, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23762087

RESUMEN

One of the greatest advances in medicine during the past century is the introduction of organ transplantation. This therapeutic strategy designed to treat organ failure and organ dysfunction allows to prolong the survival of many patients that are faced with no other treatment option. Today, organ transplantation between genetically dissimilar individuals (allogeneic grafting) is a procedure widely used as a therapeutic alternative in cases of organ failure, hematological disease treatment, and some malignancies. Despite the potential of organ transplantation, the administration of immunosuppressive drugs required for allograft acceptance induces severe immunosuppression in transplanted patients, which leads to serious side effects such as infection with opportunistic pathogens and the occurrence of neoplasias, in addition to the known intrinsic toxicity of these drugs. To solve this setback in allotransplantation, researchers have focused on manipulating the immune response in order to create a state of tolerance rather than unspecific immunosuppression. Here, we describe the different treatments and some of the novel immunotherapeutic strategies undertaken to induce transplantation tolerance.


Asunto(s)
Rechazo de Injerto/prevención & control , Factores Inmunológicos/uso terapéutico , Trasplante de Órganos , Tolerancia al Trasplante/efectos de los fármacos , Citocinas/biosíntesis , Citocinas/inmunología , Células Dendríticas/inmunología , Células Dendríticas/patología , Rechazo de Injerto/inmunología , Rechazo de Injerto/patología , Supervivencia de Injerto/efectos de los fármacos , Supervivencia de Injerto/inmunología , Humanos , Terapia de Inmunosupresión , Inmunosupresores/efectos adversos , Macrófagos/inmunología , Macrófagos/patología , Linfocitos T/inmunología , Linfocitos T/patología , Trasplante Homólogo
19.
Immunology ; 139(1): 61-71, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23278668

RESUMEN

T helper type 17 (Th17) lymphocytes are found in high frequency in tumour-burdened animals and cancer patients. These lymphocytes, characterized by the production of interleukin-17 and other pro-inflammatory cytokines, have a well-defined role in the development of inflammatory and autoimmune pathologies; however, their function in tumour immunity is less clear. We explored possible opposing anti-tumour and tumour-promoting functions of Th17 cells by evaluating tumour growth and the ability to promote tumour infiltration of myeloid-derived suppressor cells (MDSC), regulatory T cells and CD4(+)  interferon-γ(+) cells in a retinoic acid-like orphan receptor γt (RORγt) -deficient mouse model. A reduced percentage of Th17 cells in the tumour microenvironment in RORγt-deficient mice led to enhanced tumour growth, that could be reverted by adoptive transfer of Th17 cells. Differences in tumour growth were not associated with changes in the accumulation or suppressive function of MDSC and regulatory T cells but were related to a decrease in the proportion of CD4(+) T cells in the tumour. Our results suggest that Th17 cells do not affect the recruitment of immunosuppressive populations but favour the recruitment of effector Th1 cells to the tumour, thereby promoting anti-tumour responses.


Asunto(s)
Tolerancia Inmunológica , Neoplasias/inmunología , Células TH1/inmunología , Células Th17/inmunología , Animales , Línea Celular Tumoral , Ratones , Ratones Mutantes , Neoplasias/genética , Neoplasias/patología , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/inmunología , Células TH1/patología , Células Th17/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...