Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Infect Dis ; 225(5): 768-776, 2022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-34850051

RESUMEN

BACKGROUND: We determined the burden of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in air and on surfaces in rooms of patients hospitalized with coronavirus disease 2019 (COVID-19) and investigated patient characteristics associated with SARS-CoV-2 environmental contamination. METHODS: Nasopharyngeal swabs, surface, and air samples were collected from the rooms of 78 inpatients with COVID-19 at 6 acute care hospitals in Toronto from March to May 2020. Samples were tested for SARS-CoV-2 ribonucleic acid (RNA), cultured to determine potential infectivity, and whole viral genomes were sequenced. Association between patient factors and detection of SARS-CoV-2 RNA in surface samples were investigated. RESULTS: Severe acute respiratory syndrome coronavirus 2 RNA was detected from surfaces (125 of 474 samples; 42 of 78 patients) and air (3 of 146 samples; 3 of 45 patients); 17% (6 of 36) of surface samples from 3 patients yielded viable virus. Viral sequences from nasopharyngeal and surface samples clustered by patient. Multivariable analysis indicated hypoxia at admission, polymerase chain reaction-positive nasopharyngeal swab (cycle threshold of ≤30) on or after surface sampling date, higher Charlson comorbidity score, and shorter time from onset of illness to sampling date were significantly associated with detection of SARS-CoV-2 RNA in surface samples. CONCLUSIONS: The infrequent recovery of infectious SARS-CoV-2 virus from the environment suggests that the risk to healthcare workers from air and near-patient surfaces in acute care hospital wards is likely limited.


Asunto(s)
COVID-19 , Nasofaringe/virología , Aerosoles y Gotitas Respiratorias , SARS-CoV-2/aislamiento & purificación , Adulto , Anciano , Microbiología del Aire , COVID-19/epidemiología , COVID-19/prevención & control , COVID-19/transmisión , Prueba de Ácido Nucleico para COVID-19 , Canadá/epidemiología , Exposición a Riesgos Ambientales , Personal de Salud , Humanos , Pacientes Internos , Persona de Mediana Edad , Pandemias/prevención & control , SARS-CoV-2/genética
3.
Am J Respir Crit Care Med ; 203(9): 1112-1118, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33534659

RESUMEN

Rationale: Patients with severe coronavirus disease (COVID-19) require supplemental oxygen and ventilatory support. It is unclear whether some respiratory support devices may increase the dispersion of infectious bioaerosols and thereby place healthcare workers at increased risk of infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).Objectives: To quantitatively compare viral dispersion from invasive and noninvasive respiratory support modalities.Methods: This study used a simulated ICU room with a breathing-patient simulator exhaling nebulized bacteriophages from the lower respiratory tract with various respiratory support modalities: invasive ventilation (through an endotracheal tube with an inflated cuff connected to a mechanical ventilator), helmet ventilation with a positive end-expiratory pressure (PEEP) valve, noninvasive bilevel positive-pressure ventilation, nonrebreather face masks, high-flow nasal oxygen (HFNO), and nasal prongs.Measurements and Main Results: Invasive ventilation and helmet ventilation with a PEEP valve were associated with the lowest bacteriophage concentrations in the air, and HFNO and nasal prongs were associated with the highest concentrations. At the intubating position, bacteriophage concentrations associated with HFNO (2.66 × 104 plaque-forming units [PFU]/L of air sampled), nasal prongs (1.60 × 104 PFU/L of air sampled), nonrebreather face masks (7.87 × 102 PFU/L of air sampled), and bilevel positive airway pressure (1.91 × 102 PFU/L of air sampled) were significantly higher than those associated with invasive ventilation (P < 0.05 for each). The difference between bacteriophage concentrations associated with helmet ventilation with a PEEP valve (4.29 × 10-1 PFU/L of air sampled) and bacteriophage concentrations associated with invasive ventilation was not statistically significant.Conclusions: These findings highlight the potential differential risk of dispersing virus among respiratory support devices and the importance of appropriate infection prevention and control practices and personal protective equipment for healthcare workers when caring for patients with transmissible respiratory viral infections such as SARS-CoV-2.


Asunto(s)
Cuidados Críticos/métodos , ADN Viral/análisis , Transmisión de Enfermedad Infecciosa/prevención & control , Insuficiencia Respiratoria/terapia , Ventiladores Mecánicos/efectos adversos , Virosis/virología , Virus/genética , Humanos , Virosis/prevención & control , Virosis/transmisión
4.
Lancet Respir Med ; 9(5): 498-510, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33556319

RESUMEN

BACKGROUND: To date, only monoclonal antibodies have been shown to be effective for outpatients with COVID-19. Interferon lambda-1 is a type III interferon involved in innate antiviral responses with activity against respiratory pathogens. We aimed to investigate the safety and efficacy of peginterferon lambda in the treatment of outpatients with mild-to-moderate COVID-19. METHODS: In this double-blind, placebo-controlled trial, outpatients with laboratory-confirmed COVID-19 were randomly assigned to a single subcutaneous injection of peginterferon lambda 180 µg or placebo within 7 days of symptom onset or first positive swab if asymptomatic. Participants were randomly assigned (1:1) using a computer-generated randomisation list created with a randomisation schedule in blocks of four. At the time of administration, study nurses received a sealed opaque envelope with the treatment allocation number. The primary endpoint was the proportion of patients who were negative for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA on day 7 after the injection, analysed by a χ2 test following an intention-to-treat principle. Prespecified analysis of the primary endpoint, adjusted for baseline viral load, using bivariate logistic regression was done. The trial is now complete. This trial is registered with ClinicalTrials.gov, NCT04354259. FINDINGS: Between May 18, and Sept 4, 2020, we recruited 30 patients per group. The decline in SARS-CoV-2 RNA was greater in those treated with peginterferon lambda than placebo from day 3 onwards, with a difference of 2·42 log copies per mL at day 7 (p=0·0041). By day 7, 24 (80%) participants in the peginterferon lambda group had an undetectable viral load, compared with 19 (63%) in the placebo group (p=0·15). After controlling for baseline viral load, patients in the peginterferon lambda group were more likely to have undetectable virus by day 7 than were those in the placebo group (odds ratio [OR] 4·12 [95% CI 1·15-16·73; p=0·029). Of those with baseline viral load above 106 copies per mL, 15 (79%) of 19 patients in the peginterferon lambda group had undetectable virus on day 7, compared with six (38%) of 16 in the placebo group (OR 6·25 [95% CI 1·49-31·06]; p=0·012). Peginterferon lambda was well tolerated, and adverse events were similar between groups with mild and transient aminotransferase, concentration increases more frequently observed in the peginterferon lambda group. Two individuals met the threshold of grade 3 increase, one in each group, and no other grade 3 or 4 laboratory adverse events were reported. INTERPRETATION: Peginterferon lambda accelerated viral decline in outpatients with COVID-19, increasing the proportion of patients with viral clearance by day 7, particularly in those with high baseline viral load. Peginterferon lambda has potential to prevent clinical deterioration and shorten duration of viral shedding. FUNDING: The Toronto COVID-19 Action Initiative, University of Toronto, and the Ontario First COVID-19 Rapid Research Fund, Toronto General & Western Hospital Foundation.


Asunto(s)
Atención Ambulatoria/métodos , Tratamiento Farmacológico de COVID-19 , COVID-19 , Interleucinas , Polietilenglicoles , SARS-CoV-2 , Carga Viral/efectos de los fármacos , Esparcimiento de Virus/efectos de los fármacos , Antivirales/administración & dosificación , Antivirales/efectos adversos , COVID-19/diagnóstico , COVID-19/inmunología , Método Doble Ciego , Monitoreo de Drogas/métodos , Femenino , Humanos , Análisis de Intención de Tratar , Interleucinas/administración & dosificación , Interleucinas/efectos adversos , Masculino , Persona de Mediana Edad , Polietilenglicoles/administración & dosificación , Polietilenglicoles/efectos adversos , ARN Viral/aislamiento & purificación , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/fisiología , Índice de Severidad de la Enfermedad , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...