RESUMEN
Emphysema in patients with chronic obstructive pulmonary disease (COPD) is characterized by progressive inflammation. Preclinical studies suggest that lung volume reduction surgery (LVRS) and mesenchymal stromal cell (MSC) treatment dampen inflammation. We investigated the effects of bone marrow-derived MSC (BM-MSC) and LVRS on circulating and pulmonary immune cell profiles in emphysema patients using mass cytometry. Blood and resected lung tissue were collected at the first LVRS (L1). Following 6-10 weeks of recovery, patients received a placebo or intravenous administration of 2 × 106 cells/kg bodyweight BM-MSC (n = 5 and n = 9, resp.) in week 3 and 4 before the second LVRS (L2), where blood and lung tissue were collected. Irrespective of BM-MSC or placebo treatment, proportions of circulating lymphocytes including central memory CD4 regulatory, effector memory CD8 and γδ T cells were higher, whereas myeloid cell percentages were lower in L2 compared to L1. In resected lung tissue, proportions of Treg (p = 0.0067) and anti-inflammatory CD163- macrophages (p = 0.0001) were increased in L2 compared to L1, while proportions of pro-inflammatory CD163+ macrophages were decreased (p = 0.0004). There were no effects of BM-MSC treatment on immune profiles in emphysema patients. However, we observed alterations in the circulating and pulmonary immune cells upon LVRS, suggesting the induction of anti-inflammatory responses potentially needed for repair processes.
Asunto(s)
Pulmón , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Enfisema Pulmonar , Humanos , Trasplante de Células Madre Mesenquimatosas/métodos , Masculino , Femenino , Pulmón/patología , Pulmón/inmunología , Células Madre Mesenquimatosas/inmunología , Células Madre Mesenquimatosas/citología , Persona de Mediana Edad , Enfisema Pulmonar/inmunología , Enfisema Pulmonar/cirugía , Enfisema Pulmonar/terapia , Anciano , Neumonectomía , Trasplante HomólogoRESUMEN
Objectives: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a member of a class of highly pathogenic coronaviruses. The large family of coronaviruses, however, also includes members that cause only mild symptoms, like human coronavirus-229E (HCoV-229E) or OC43 (HCoV-OC43). Unravelling how molecular (and cellular) pathophysiology differs between highly and low pathogenic coronaviruses is important for the development of therapeutic strategies. Methods: Here, we analysed the transcriptome of primary human bronchial epithelial cells (PBEC), differentiated at the air-liquid interface (ALI) after infection with SARS-CoV-2, SARS-CoV, Middle East Respiratory Syndrome (MERS)-CoV and HCoV-229E using bulk RNA sequencing. Results: ALI-PBEC were efficiently infected by all viruses, and SARS-CoV, MERS-CoV and HCoV-229E infection resulted in a largely similar transcriptional response. The response to SARS-CoV-2 infection differed markedly as it uniquely lacked the increase in expression of immediate early genes, including FOS, FOSB and NR4A1 that was observed with all other coronaviruses. This finding was further confirmed in publicly available experimental and clinical datasets. Interfering with NR4A1 signalling in Calu-3 lung epithelial cells resulted in a 100-fold reduction in extracellular RNA copies of SARS-CoV-2 and MERS-CoV, suggesting an involvement in virus replication. Furthermore, a lack in induction of interferon-related gene expression characterised the main difference between the highly pathogenic coronaviruses and low pathogenic viruses HCoV-229E and HCoV-OC43. Conclusion: Our results demonstrate a previously unknown suppression of a host response gene set by SARS-CoV-2 and confirm a difference in interferon-related gene expression between highly pathogenic and low pathogenic coronaviruses.
RESUMEN
Rationale: Chronic inflammation plays an important role in alveolar tissue damage in emphysema, but the underlying immune alterations and cellular interactions are incompletely understood. Objectives: To explore disease-specific pulmonary immune cell alterations and cellular interactions in emphysema. Methods: We used single-cell mass cytometry (CyTOF) to compare the immune compartment in alveolar tissue from 15 patients with severe emphysema and 5 control subjects. Imaging mass cytometry (IMC) was applied to identify altered cell-cell interactions in alveolar tissue from patients with emphysema (n = 12) compared with control subjects (n = 8). Measurements and Main Results: We observed higher percentages of central memory CD4 T cells in combination with lower proportions of effector memory CD4 T cells in emphysema. In addition, proportions of cytotoxic central memory CD8 T cells and CD127+CD27+CD69- T cells were higher in emphysema, the latter potentially reflecting an influx of circulating lymphocytes into the lungs. Central memory CD8 T cells, isolated from alveolar tissue from patients with emphysema, exhibited an IFN-γ response upon anti-CD3 and anti-CD28 activation. Proportions of CD1c+ dendritic cells, expressing migratory and costimulatory markers, were higher in emphysema. Importantly, IMC enabled us to visualize increased spatial colocalization of CD1c+ dendritic cells and CD8 T cells in emphysema in situ. Conclusions: Using CyTOF, we characterized the alterations of the immune cell signature in alveolar tissue from patients with chronic obstructive pulmonary disease stage III or IV emphysema versus control lung tissue. These data contribute to a better understanding of the pathogenesis of emphysema and highlight the feasibility of interrogating the immune cell signature using CyTOF and IMC in human lung tissue. Clinical trial registered with www.clinicaltrials.gov (NCT04918706).
Asunto(s)
Enfisema Pulmonar , Humanos , Masculino , Femenino , Anciano , Enfisema Pulmonar/inmunología , Persona de Mediana Edad , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD4-Positivos/inmunología , Citometría de Flujo/métodos , Estudios de Casos y ControlesRESUMEN
Heart surgery may be complicated by acute lung injury and adult respiratory distress syndrome. Expression and release of mucins MUC5AC and MUC5B in the lungs has been reported to be increased in acute lung injury. The aim of our study was to [1] investigate the perioperative changes of MUC5AC, MUC5B and other biomarkers in mini-bronchoalveolar lavage (minBAL), and [2] relate these to clinical outcomes after cardiac surgery. In this prospective cohort study in 49 adult cardiac surgery patients pre- and post-surgery non-fiberscopic miniBAL fluids were analysed for MUC5AC, MUC5B, IL-8, human neutrophil elastase, and neutrophils. All measured biomarkers increased after surgery. Perioperative MUC5AC-change showed a significant negative association with postoperative P/F ratio (p = 0.018), and a positive association with ICU stay (p = 0.027). In conclusion, development of lung injury after cardiac surgery and prolonged ICU stay are associated with an early increase of MUC5AC as detected in mini-BAL.
Asunto(s)
Lesión Pulmonar Aguda , Procedimientos Quirúrgicos Cardíacos , Adulto , Humanos , Líquido del Lavado Bronquioalveolar , Estudios Prospectivos , Lesión Pulmonar Aguda/diagnóstico , Lesión Pulmonar Aguda/etiología , Procedimientos Quirúrgicos Cardíacos/efectos adversos , Biomarcadores/análisis , Mucina 5AC/metabolismoAsunto(s)
Enfisema , Enfisema Pulmonar , Humanos , Células Epiteliales Alveolares , Células Endoteliales , Pulmón , Alveolos PulmonaresRESUMEN
BACKGROUND: The lower airway microbiota in patients with chronic obstructive pulmonary disease (COPD) are likely altered compared with the microbiota in healthy individuals. Information on how the microbiota is affected by smoking, use of inhaled corticosteroids (ICS) and COPD severity is still scarce. METHODS: In the MicroCOPD Study, participant characteristics were obtained through standardised questionnaires and clinical measurements at a single centre from 2012 to 2015. Protected bronchoalveolar lavage samples from 97 patients with COPD and 97 controls were paired-end sequenced with the Illumina MiSeq System. Data were analysed in QIIME 2 and R. RESULTS: Alpha-diversity was lower in patients with COPD than controls (Pielou evenness: COPD=0.76, control=0.80, p=0.004; Shannon entropy: COPD=3.98, control=4.34, p=0.01). Beta-diversity differed with smoking only in the COPD cohort (weighted UniFrac: permutational analysis of variance R2=0.04, p=0.03). Nine genera were differentially abundant between COPD and controls. Genera enriched in COPD belonged to the Firmicutes phylum. Pack years were linked to differential abundance of taxa in controls only (ANCOM-BC (Analysis of Compositions of Microbiomes with Bias Correction) log-fold difference/q-values: Haemophilus -0.05/0.048; Lachnoanaerobaculum -0.04/0.03). Oribacterium was absent in smoking patients with COPD compared with non-smoking patients (ANCOM-BC log-fold difference/q-values: -1.46/0.03). We found no associations between the microbiota and COPD severity or ICS. CONCLUSION: The lower airway microbiota is equal in richness in patients with COPD to controls, but less even. Genera from the Firmicutes phylum thrive particularly in COPD airways. Smoking has different effects on diversity and taxonomic abundance in patients with COPD compared with controls. COPD severity and ICS use were not linked to the lower airway microbiota.
RESUMEN
Radiation-induced lung injury (RILI) is one of the main dose-limiting toxicities in radiation therapy (RT) for lung cancer. Approximately 10% to 20% of patients show signs of RILI of variable severity. The reason for the wide range of RILI severity and the mechanisms underlying its development are only partially understood. A number of clinical risk factors have been identified that can aid in clinical decision making. Technological advancements in RT and the use of strict organ-at-risk dose constraints have helped to reduce RILI. Predicting patients at risk for RILI may be further improved with a combination of cytokine assessments, γH2AX-assays in leukocytes, or epigenetic markers. A complicating factor is the lack of an objective definition of RILI. Tools such as computed tomography densitometry, fluorodeoxyglucose-positron emission tomography uptake, changes in lung function measurements, and exhaled breath analysis can be implemented to better define and quantify RILI. This can aid in the search for new biomarkers, which can be accelerated by omics techniques, single-cell RNA sequencing, mass cytometry, and advances in patient-specific in vitro cell culture models. An objective quantification of RILI combined with these novel techniques can aid in the development of biomarkers to better predict patients at risk and allow personalized treatment decisions.
Asunto(s)
Lesión Pulmonar , Neoplasias Pulmonares , Traumatismos por Radiación , Humanos , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/complicaciones , Lesión Pulmonar/etiología , Pulmón/diagnóstico por imagen , Traumatismos por Radiación/diagnóstico , Traumatismos por Radiación/complicaciones , BiomarcadoresRESUMEN
Lung epithelial cells represent the first line of host defence against foreign inhaled components, including respiratory pathogens. Their responses to these exposures may direct subsequent immune activation to these pathogens. The epithelial response to mycobacterial infections is not well characterized and may provide clues to why some mycobacterial infections are cleared, while others are persistent and pathogenic. We have utilized an air-liquid interface model of human primary bronchial epithelial cells (ALI-PBEC) to investigate the epithelial response to infection with a variety of mycobacteria: Mycobacterium tuberculosis (Mtb), M. bovis (BCG), M. avium, and M. smegmatis. Airway epithelial cells were found to be infected by all four species, albeit at low frequencies. The proportion of infected epithelial cells was lowest for Mtb and highest for M. avium. Differential gene expression analysis revealed a common epithelial host response to mycobacteria, including upregulation of BIRC3, S100A8 and DEFB4, and downregulation of BPIFB1 at 48 h post infection. Apical secretions contained predominantly pro-inflammatory cytokines, while basal secretions contained tissue growth factors and chemokines. Finally, we show that neutrophils were attracted to both apical and basal secretions of infected ALI-PBEC. Neutrophils were attracted in high numbers to apical secretions from PBEC infected with all mycobacteria, with the exception of secretions from M. avium-infected ALI-PBEC. Taken together, our results show that airway epithelial cells are differentially infected by mycobacteria, and react rapidly by upregulation of antimicrobials, and increased secretion of inflammatory cytokines and chemokines which directly attract neutrophils. Thus, the airway epithelium may be an important immunological component in controlling and regulating mycobacterial infections.
Asunto(s)
Infecciones por Mycobacterium , Mycobacterium tuberculosis , Humanos , Citocinas/metabolismo , Células Epiteliales/metabolismo , Quimiocinas/metabolismoRESUMEN
Due to their ability to eliminate antimicrobial resistant (AMR) bacteria and to modulate the immune response, host defence peptides (HDPs) hold great promise for the clinical treatment of bacterial infections. Whereas monotherapy with HDPs is not likely to become an effective first-line treatment, combinations of such peptides with antibiotics can potentially provide a path to future therapies for AMR infections. Therefore, we critically reviewed the recent literature regarding the antibacterial activity of combinations of HDPs and antibiotics against AMR bacteria and the approaches taken in these studies. Of the 86 studies compiled, 56 featured a formal assessment of synergy between agents. Of the combinations assessed, synergistic and additive interactions between HDPs and antibiotics amounted to 84.9% of the records, while indifferent and antagonistic interactions accounted for 15.1%. Penicillin, aminoglycoside, fluoro/quinolone, and glycopeptide antibiotic classes were the most frequently documented as interacting with HDPs, and Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Enterococcus faecium were the most reported bacterial species. Few studies formally evaluated the effects of combinations of HDPs and antibiotics on bacteria, and even fewer assessed such combinations against bacteria within biofilms, in animal models, or in advanced tissue infection models. Despite the biases of the current literature, the studies suggest that effective combinations of HDPs and antibiotics hold promise for the future treatment of infections caused by AMR bacteria.
RESUMEN
Rationale: IL-33 is a proinflammatory cytokine thought to play a role in the pathogenesis of asthma and chronic obstructive pulmonary disease (COPD). A recent clinical trial using an anti-IL-33 antibody showed a reduction in exacerbation and improved lung function in ex-smokers but not current smokers with COPD. Objectives: This study aimed to understand the effects of smoking status on IL-33. Methods: We investigated the association of smoking status with the level of gene expression of IL-33 in the airways in eight independent transcriptomic studies of lung airways. Additionally, we performed Western blot analysis and immunohistochemistry for IL-33 in lung tissue to assess protein levels. Measurements and Main Results: Across the bulk RNA-sequencing datasets, IL-33 gene expression and its signaling pathway were significantly lower in current versus former or never-smokers and increased upon smoking cessation (P < 0.05). Single-cell sequencing showed that IL-33 is predominantly expressed in resting basal epithelial cells and decreases during the differentiation process triggered by smoke exposure. We also found a higher transitioning of this cellular subpopulation into a more differentiated cell type during chronic smoking, potentially driving the reduction of IL-33. Protein analysis demonstrated lower IL-33 levels in lung tissue from current versus former smokers with COPD and a lower proportion of IL-33-positive basal cells in current versus ex-smoking controls. Conclusions: We provide strong evidence that cigarette smoke leads to an overall reduction in IL-33 expression in transcriptomic and protein level, and this may be due to the decrease in resting basal cells. Together, these findings may explain the clinical observation that a recent antibody-based anti-IL-33 treatment is more effective in former than current smokers with COPD.
Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Fumadores , Humanos , Interleucina-33/genética , Fumar/genética , Enfermedad Pulmonar Obstructiva Crónica/patología , Perfilación de la Expresión GénicaRESUMEN
BACKGROUND: Acute exacerbations of chronic inflammatory lung diseases, such as chronic obstructive pulmonary disease (COPD), are frequently associated with rhinovirus (RV) infections. Despite these associations, the pathogenesis of virus-induced exacerbations is incompletely understood. We aimed to investigate effects of cigarette smoke (CS), a primary risk factor for COPD, on RV infection in airway epithelium and identify novel mechanisms related to these effects. METHODS: Primary bronchial epithelial cells (PBEC) from COPD patients and controls were differentiated by culture at the air-liquid interface (ALI) and exposed to CS and RV-A16. Bulk RNA sequencing was performed using samples collected at 6 and 24 h post infection (hpi), and viral load, mediator and L-lactate levels were measured at 6, 24 and 48hpi. To further delineate the effect of CS on RV-A16 infection, we performed growth differentiation factor 15 (GDF15) knockdown, L-lactate and interferon pre-treatment in ALI-PBEC. We performed deconvolution analysis to predict changes in the cell composition of ALI-PBEC after the various exposures. Finally, we compared transcriptional responses of ALI-PBEC to those in nasal epithelium after human RV-A16 challenge. RESULTS: CS exposure impaired antiviral responses at 6hpi and increased viral replication at 24 and 48hpi in ALI-PBEC. At 24hpi, CS exposure enhanced expression of RV-A16-induced epithelial interferons, inflammation-related genes and CXCL8. CS exposure increased expression of oxidative stress-related genes, of GDF15, and decreased mitochondrial membrane potential. GDF15 knockdown experiments suggested involvement of this pathway in the CS-induced increase in viral replication. Expression of glycolysis-related genes and L-lactate production were increased by CS exposure, and was demonstrated to contribute to higher viral replication. No major differences were demonstrated between COPD and non-COPD-derived cultures. However, cellular deconvolution analysis predicted higher secretory cells in COPD-derived cultures at baseline. CONCLUSION: Altogether, our findings demonstrate that CS exposure leads to higher viral infection in human bronchial epithelium by altering not only interferon responses, but likely also through a switch to glycolysis, and via GDF15-related pathways.
Asunto(s)
Fumar Cigarrillos , Enfermedad Pulmonar Obstructiva Crónica , Virosis , Humanos , Interferones , Factor 15 de Diferenciación de Crecimiento , Fumar Cigarrillos/efectos adversos , LactatosRESUMEN
Human lung function is intricately linked to blood flow and breathing cycles, but it remains unknown how these dynamic cues shape human airway epithelial biology. Here we report a state-of-the-art protocol for studying the effects of dynamic medium and airflow as well as stretch on human primary airway epithelial cell differentiation and maturation, including mucociliary clearance, using an organ-on-chip device. Perfused epithelial cell cultures displayed accelerated maturation and polarization of mucociliary clearance, and changes in specific cell-types when compared to traditional (static) culture methods. Additional application of airflow and stretch to the airway chip resulted in an increase in polarization of mucociliary clearance towards the applied flow, reduced baseline secretion of interleukin-8 and other inflammatory proteins, and reduced gene expression of matrix metalloproteinase (MMP) 9, fibronectin, and other extracellular matrix factors. These results indicate that breathing-like mechanical stimuli are important modulators of airway epithelial cell differentiation and maturation and that their fine-tuned application could generate models of specific epithelial pathologies, including mucociliary (dys)function.
RESUMEN
The airway epithelial cell layer forms the first barrier between lung tissue and the outside environment and is thereby constantly exposed to inhaled substances, including infectious agents and air pollutants. The airway epithelial layer plays a central role in a large variety of acute and chronic lung diseases, and various treatments targeting this epithelium are administered by inhalation. Understanding the role of epithelium in pathogenesis and how it can be targeted for therapy requires robust and representative models. In vitro epithelial culture models are increasingly being used and offer the advantage of performing experiments in a controlled environment, exposing the cells to different kinds of stimuli, toxicants, or infectious agents. The use of primary cells instead of immortalized or tumor cell lines has the advantage that these cells differentiate in culture to a pseudostratified polarized epithelial cell layer with a better representation of the epithelium compared to cell lines. Presented here is a robust protocol, that has been optimized over the past decades, for the isolation and culture of airway epithelial cells from lung tissue. This procedure allows successful isolation, expansion, culture, and mucociliary differentiation of primary bronchial epithelial cells (PBECs) by culturing at the air-liquid interface (ALI) and includes a protocol for biobanking. Furthermore, the characterization of these cultures using cell-specific marker genes is described. These ALI-PBEC cultures can be used for a range of applications, including exposure to whole cigarette smoke or inflammatory mediators, and co-culture/infection with viruses or bacteria. The protocol provided in this manuscript, illustrating the procedure in a step-by-step manner, is expected to provide a basis and/or reference for those interested in implementing or adapting such culture systems in their laboratory.
Asunto(s)
Bancos de Muestras Biológicas , Células Epiteliales , Epitelio , Línea Celular Tumoral , PulmónRESUMEN
After more than two years the COVID-19 pandemic, that is caused by infection with the respiratory SARS-CoV-2 virus, is still ongoing. The risk to develop severe COVID-19 upon SARS-CoV-2 infection is increased in individuals with a high age, high body mass index, and who are smoking. The SARS-CoV-2 virus infects cells of the upper respiratory tract by entering these cells upon binding to the Angiotensin-converting enzyme 2 (ACE2) receptor. ACE2 is expressed in various cell types in the lung but the expression is especially high in goblet and ciliated cells. Recently, it was shown that next to its full-length isoform, ACE2 also has a short isoform. The short isoform is unable to bind SARS-CoV-2 and does not facilitate viral entry. In the current study we investigated whether active cigarette smoking increases the expression of the long or the short ACE2 isoform. We showed that in active smokers the expression of the long, active isoform, but not the short isoform of ACE2 is higher compared to never smokers. Additionally, it was shown that the expression of especially the long, active isoform of ACE2 was associated with secretory, club and goblet epithelial cells. This study increases our understanding of why current smokers are more susceptible to SARS-CoV-2 infection, in addition to the already established increased risk to develop severe COVID-19.
Asunto(s)
COVID-19 , Mucosa Respiratoria , Fumar , Humanos , Enzima Convertidora de Angiotensina 2 , COVID-19/genética , COVID-19/inmunología , Epitelio/metabolismo , Pandemias , Peptidil-Dipeptidasa A , Mucosa Respiratoria/metabolismo , SARS-CoV-2 , Fumar/efectos adversos , Glicoproteína de la Espiga del Coronavirus/metabolismoRESUMEN
The consequences of infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can range from asymptomatic to fatal disease. Variations in epithelial susceptibility to SARS-CoV-2 infection depend on the anatomical location from the proximal to distal respiratory tract. However, the cellular biology underlying these variations is not completely understood. Thus, air-liquid interface cultures of well-differentiated primary human tracheal and bronchial epithelial cells were employed to study the impact of epithelial cellular composition and differentiation on SARS-CoV-2 infection by transcriptional (RNA sequencing) and immunofluorescent analyses. Changes of cellular composition were investigated by varying time of differentiation or by using specific compounds. We found that SARS-CoV-2 primarily infected not only ciliated cells but also goblet cells and transient secretory cells. Viral replication was impacted by differences in cellular composition, which depended on culturing time and anatomical origin. A higher percentage of ciliated cells correlated with a higher viral load. However, DAPT treatment, which increased the number of ciliated cells and reduced goblet cells, decreased viral load, indicating the contribution of goblet cells to infection. Cell entry factors, especially cathepsin L and transmembrane protease serine 2, were also affected by differentiation time. In conclusion, our study demonstrates that viral replication is affected by changes in cellular composition, especially in cells related to the mucociliary system. This could explain in part the variable susceptibility to SARS-CoV-2 infection between individuals and between anatomical locations in the respiratory tract.
Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Sistema Respiratorio , Células Epiteliales , BiologíaRESUMEN
RATIONALE: Severe asthma and chronic obstructive pulmonary disease (COPD) share common pathophysiological traits such as relative corticosteroid insensitivity. We recently published three transcriptome-associated clusters (TACs) using hierarchical analysis of the sputum transcriptome in asthmatics from the Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes (U-BIOPRED) cohort comprising one Th2-high inflammatory signature (TAC1) and two Th2-low signatures (TAC2 and TAC3). OBJECTIVE: We examined whether gene expression signatures obtained in asthma can be used to identify the subgroup of patients with COPD with steroid sensitivity. METHODS: Using gene set variation analysis, we examined the distribution and enrichment scores (ES) of the 3 TACs in the transcriptome of bronchial biopsies from 46 patients who participated in the Groningen Leiden Universities Corticosteroids in Obstructive Lung Disease COPD study that received 30 months of treatment with inhaled corticosteroids (ICS) with and without an added long-acting ß-agonist (LABA). The identified signatures were then associated with longitudinal clinical variables after treatment. Differential gene expression and cellular convolution were used to define key regulated genes and cell types. MEASUREMENTS AND MAIN RESULTS: Bronchial biopsies in patients with COPD at baseline showed a wide range of expression of the 3 TAC signatures. After ICS±LABA treatment, the ES of TAC1 was significantly reduced at 30 months, but those of TAC2 and TAC3 were unaffected. A corticosteroid-sensitive TAC1 signature was developed from the TAC1 ICS-responsive genes. This signature consisted of mast cell-specific genes identified by single-cell RNA-sequencing and positively correlated with bronchial biopsy mast cell numbers following ICS±LABA. Baseline levels of gene transcription correlated with the change in RV/TLC %predicted following 30-month ICS±LABA. CONCLUSION: Sputum-derived transcriptomic signatures from an asthma cohort can be recapitulated in bronchial biopsies of patients with COPD and identified a signature of airway mast cells as a predictor of corticosteroid responsiveness.
Asunto(s)
Corticoesteroides , Asma , Mastocitos , Enfermedad Pulmonar Obstructiva Crónica , Células Th2 , Humanos , Administración por Inhalación , Corticoesteroides/uso terapéutico , Agonistas de Receptores Adrenérgicos beta 2/uso terapéutico , Asma/tratamiento farmacológico , Asma/genética , Biomarcadores , Broncodilatadores/uso terapéutico , Quimioterapia Combinada , Mastocitos/efectos de los fármacos , Mastocitos/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Enfermedad Pulmonar Obstructiva Crónica/genética , Células Th2/efectos de los fármacos , Células Th2/metabolismoRESUMEN
BACKGROUND: The heterodimer interleukin (IL)-17A/F is elevated in the lungs in chronic respiratory disease such as severe asthma, along with the pro-inflammatory cytokine tumor necrosis factor-α (TNF-α). Although IL-17A/F and TNF-α are known to functionally cooperate to exacerbate airway inflammation, proteins altered by their interaction in the lungs are not fully elucidated. RESULTS: We used Slow Off-rate Modified Aptamer-based proteomic array to identify proteins that are uniquely and/or synergistically enhanced by concurrent stimulation with IL-17A/F and TNF-α in human bronchial epithelial cells (HBEC). The abundance of 38 proteins was significantly enhanced by the combination of IL-17A/F and TNF-α, compared to either cytokine alone. Four out of seven proteins that were increased > 2-fold were those that promote neutrophil migration; host defence peptides (HDP; Lipocalin-2 (LCN-2) and Elafin) and chemokines (IL-8, GROα). We independently confirmed the synergistic increase of these four proteins by western blots and ELISA. We also functionally confirmed that factors secreted by HBEC stimulated with the combination of IL-17A/F and TNF-α uniquely enhances neutrophil migration. We further showed that PI3K and PKC pathways selectively control IL-17A/F + TNF-α-mediated synergistic production of HDPs LCN-2 and Elafin, but not chemokines IL-8 and GROα. Using a murine model of airway inflammation, we demonstrated enhancement of IL-17A/F, TNF-α, LCN-2 and neutrophil chemokine KC in the lungs, thus corroborating our findings in-vivo. CONCLUSION: This study identifies proteins and signaling mediated by concurrent IL-17A/F and TNF-α exposure in the lungs, relevant to respiratory diseases characterized by chronic inflammation, especially neutrophilic airway inflammation such as severe asthma.