Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 14(7): 4966-4974, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38327810

RESUMEN

The auxetic materials have exotic mechanical properties compared to conventional materials, such as higher indentation resistance, more superior sound absorption performance. Although the auxetic behavior has also been observed in two-dimensional (2D) nanomaterials, to date there has not been much research on auxetic materials in the vertical asymmetric Janus 2D layered structures. In this paper, we explore the mechanical, electronic, and transport characteristics of Janus Si2OX (X = S, Se, Te) monolayers by first-principle calculations. Except for the Si2OTe monolayer, both Si2OS and Si2OSe are found to be stable. Most importantly, both Si2OS and Si2OSe monolayers are predicted to be auxetic semiconductors with a large negative Poisson's ratio. The auxetic behavior is clearly observed in the Janus Si2OS monolayer with an extremely large negative Poisson's ratio of -0.234 in the x axis. At the equilibrium state, both Si2OS and Si2OSe materials exhibit indirect semiconducting characteristics and their band gaps can be easily altered by the mechanical strain. More interestingly, the indirect-direct bandgap phase transitions are observed in both Si2OS and Si2OSe monolayers when the biaxial strains are introduced. Further, the studied Janus structures also exhibit remarkably high electron mobility, particularly along the x direction. Our findings demonstrate that Si2OS and Si2OSe monolayers are new auxetic materials with asymmetric structures and show their great promise in electronic and nanomechanical applications.

2.
Nanoscale Adv ; 6(4): 1193-1201, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38356616

RESUMEN

The emergence of van der Waals (vdW) heterostructures, which consist of vertically stacked two-dimensional (2D) materials held together by weak vdW interactions, has introduced an innovative avenue for tailoring nanoelectronic devices. In this study, we have theoretically designed a metal/semiconductor heterostructure composed of NbS2 and Janus MoSSe, and conducted a thorough investigation of its electronic properties and the formation of contact barriers through first-principles calculations. The effects of stacking configurations and the influence of external electric fields in enhancing the tunability of the NbS2/Janus MoSSe heterostructure are also explored. Our findings demonstrate that the NbS2/MoSSe heterostructure is not only structurally and thermally stable but also exfoliable, making it a promising candidate for experimental realization. In its ground state, this heterostructure exhibits p-type Schottky contacts characterized by small Schottky barriers and low tunneling barrier resistance, showing its considerable potential for utilization in electronic devices. Additionally, our findings reveal that the electronic properties, contact barriers and contact types of the NbS2/MoSSe heterostructure can be tuned by applying electric fields. A negative electric field leads to a conversion from a p-type Schottky contact to an n-type Schottky contact, whereas a positive electric field gives rise to a transformation from a Schottky into an ohmic contact. These insights offer valuable theoretical guidance for the practical utilization of the NbS2/MoSSe heterostructure in the development of next-generation electronic and optoelectronic devices.

3.
Langmuir ; 39(48): 17251-17260, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37972320

RESUMEN

Conducting heterostructures have emerged as a promising strategy to enhance physical properties and unlock the potential application of such materials. Herein, we conduct and investigate the electronic and transport properties of the BSe/Sc2CF2 heterostructure using first-principles calculations. The BSe/Sc2CF2 heterostructure is structurally and thermodynamically stable, indicating that it can be feasible for further experiments. The BSe/Sc2CF2 heterostructure exhibits a semiconducting behavior with an indirect band gap and possesses type-II band alignment. This unique alignment promotes efficient charge separation, making it highly promising for device applications, including solar cells and photodetectors. Furthermore, type-II band alignment in the BSe/Sc2CF2 heterostructure leads to a reduced band gap compared to the individual BSe and Sc2CF2 monolayers, leading to enhanced charge carrier mobility and light absorption. Additionally, the generation of the BSe/Sc2CF2 heterostructure enhances the transport properties of the BSe and Sc2CF2 monolayers. The electric fields and strains can modify the electronic properties, thus expanding the potential application possibilities. Both the electric fields and strains can tune the band gap and lead to the type-II to type-I conversion in the BSe/Sc2CF2 heterostructure. These findings shed light on the versatile nature of the BSe/Sc2CF2 heterostructure and its potential for advanced nanoelectronic and optoelectronic devices.

4.
Nanoscale Adv ; 5(23): 6705-6713, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38024315

RESUMEN

From the extending requirements for using innovative materials in advanced technologies, it is necessary to explore new materials for relevant applications. In this work, we design new two-dimensional (2D) Janus ZrSiSZ2 (Z = N, P, As) monolayers and investigate their crystal lattice and dynamic stability by using density functional theory investigations. The two stable structures of ZrSiSP2 and ZrSiSAs2 are then systematically examined for thermal, energetic, and mechanical stability, and electronic and transport properties. The calculation results demonstrate that both the ZrSiSP2 and ZrSiSAs2 monolayers have good thermal stability at room temperature and high energetic/mechanical stabilities for experimental synthesis. The studied structures are found to be in-direct semiconductors. Specifically, with moderate band-gap energies of 1.04 to 1.29 eV for visible light absorption, ZrSiSP2 and ZrSiSAs2 can be considered potential candidates for photovoltaic applications. The applied biaxial strains and external electric fields slightly change the band-gap energies of the monolayers. We also calculate the carrier mobilities for the transport properties based on the deformation potential method. Due to the lower effective masses, the carrier mobilities in the x direction are higher than those in the y direction. The carrier mobilities of the ZrSiSP2 and ZrSiSAs2 monolayers are anisotropic not only in transport directions but also for the electrons and holes. We believe that the results of our work may stimulate further studies to explore more new 2D Janus monolayers with novel properties of the MA2Z4 family materials.

5.
Nanoscale Adv ; 5(18): 4979-4985, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37705766

RESUMEN

Two-dimensional (2D) metal-semiconductor heterostructures play a critical role in the development of modern electronics technology, offering a platform for tailored electronic behavior and enhanced device performance. Herein, we construct a novel 2D metal-semiconductor MoSH@MoS2 heterostructure and investigate its structures, electronic properties and contact characteristics using first-principles investigations. We find that the MoSH@MoS2 heterostructure exhibits a p-type Schottky contact, where the specific Schottky barrier height varies depending on the stacking configurations employed. Furthermore, the MoSH@MoS2 heterostructures possess low tunneling probabilities, indicating a relatively low electron transparency across all the patterns of the MoSH@MoS2 heterostructures. Interestingly, by modulating the electric field, it is possible to modify the Schottky barriers and achieve a transformation from a p-type Schottky contact into an n-type Schottky contact. Our findings pave the way for the development of advanced electronics technology based on metal-semiconductor MoSH@MoS2 heterostructures with enhanced tunability and versatility.

6.
Phys Chem Chem Phys ; 25(32): 21468-21478, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37539527

RESUMEN

Two-dimensional (2D) Janus materials with extraordinary properties are promising candidates for utilization in advanced technologies. In this study, new 2D Janus XWSiP2 (X = S, Se, Te) monolayers were constructed and their properties were systematically analyzed by using first-principles calculations. All three structures of SWSiP2, SeWSiP2, and TeWSiP2 exhibit high energetic stability for the experimental fabrication with negative and high Ecoh values, the elastic constants obey the criteria of Born-Huang, and no imaginary frequency exists in the phonon dispersion spectra. The calculated results from the PBE and HSE06 approaches reveal that the XWSiP2 are semiconductors with moderate direct band-gaps varying from 1.01 eV to 1.06 eV using the PBE method, and 1.39 eV to 1.44 eV using the HSE06 method. In addition, the electronic band structures of the three monolayers are significantly affected by the applied strains. Interestingly, the transitions from a direct to indirect semiconductor are observed for different biaxial strains εb. The transport parameters including the carrier mobility values along the x direction µx and y direction µy were also calculated to study the transport properties of the XWSiP2. The results indicate that the XWSiP2 monolayers not only have high carrier mobilities but also anisotropy in the transport directions for both holes and electrons. Together with the moderate and tunable energy gaps, the XWSiP2 materials are found to be potential candidates for application in the photonic, photovoltaic, optoelectronic, and electronic fields.

7.
Phys Chem Chem Phys ; 25(35): 23829-23835, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37641558

RESUMEN

We theoretically study the role of adsorbed gas molecules on the electronic and optical properties of monolayer ß12-borophene with {a,b,c,d,e} atoms in its unit cell. We focus our attention on molecules NH3, NO, NO2, and CO, which provide additional states permitted by the host electrons. Utilizing the six-band tight-binding model based on an inversion symmetry (between {a,e} and {b,d} atoms) and the Kubo formalism, we survey the anisotropic electronic dispersion and the optical multi-interband spectrum produced by molecule-boron coupling. We consider the highest possibilities for the position of molecules on the boron atoms. For molecules on {a,e} atoms, the inherent metallic phase of ß12-borophene becomes electron-doped semiconducting, while for molecules on {b,d} and c atoms, the metallic phase remains unchanged. For molecules on {a,e} and {b,d} atoms, we observe a redshift (blueshift) optical spectrum for longitudinal/transverse (Hall) component, while for molecules on c atoms, we find a redshift (blueshift) optical spectrum for longitudinal (transverse/Hall) component. We expect that this study provides useful information for engineering field-effect transistor-based gas sensors.

8.
J Phys Condens Matter ; 35(43)2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37467755

RESUMEN

We study the transport properties of monolayers MoSi2N4, WSi2N4, and MoSi2As4in a perpendicular magnetic field. The Landau level (LL) band structures including spin and exchange field effects are derived and discussed using a low-energy effective model. We show that the LLs band structures of these materials are similar to those of phosphorene and transition-metal dichalcogenides rather than graphene or silicene. The combination of strong spin-orbit coupling and exchange fields reduces the degradation of the LLs, leading to new plateaus in the Hall conductivity and Hall resistivity and new peaks in the longitudinal conductivity and longitudinal resistivity. The effect of the exchange field, carrier density, and LLs band structure on the conductivities and resistivities have been investigated. At high temperatures, the steps in Hall conductivity and resistivity plateaus disappear and reduce to their corresponding classical forms.

9.
Nanoscale Adv ; 5(11): 3104-3113, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37260499

RESUMEN

In this work, we propose novel two-dimensional Janus XCrSiN2 (X = S, Se, and Te) single-layers and comprehensively investigate their crystal structure, electronic properties, and carrier mobility by using a first-principles method. These configurations are the combination of the CrSi2N4 material and a transition metal dichalcogenide. The X-Cr-SiN2 single-layers are constructed by replacing the N-Si-N atomic layer on one side with chalcogen atoms (S, Se, or Te). The structural characteristics, mechanical or thermal stabilities, and electronic properties are investigated adequately. All three examined configurations are energetically stable and are all small-bandgap semiconductors (<1 eV). Since the mirror symmetry is broken in the Janus material, there exists a remarkable built-in electric field and intrinsic dipole moment. Therefore, the spin-orbit interaction is considered intensively. However, it is observed that the spin-orbit coupling has insignificant effects on the electronic properties of XCrSiN2 (X = S, Se, and Te). Moreover, an external electric field and strain are applied to evaluate the adjustment of the electronic features of the three structures. The transport properties of the proposed configurations are calculated and analyzed systematically, indicating the highly directional isotropy. Our results suggest that the proposed Janus XCrSiN2 could be potential candidates for various applications, especially in nanoscale electronic devices.

10.
Phys Chem Chem Phys ; 25(27): 18075-18085, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37381754

RESUMEN

In this study, we construct new 2D Janus MGeSN2 (M = Ti, Zr, and Hf) monolayers and systematically investigate their electronic band structures under applied biaxial strain. Their crystal lattice and electronic as well as transport properties are also examined based on the first-principles calculations and deformation potential theory. The results show that the MGeSN2 structures have good dynamical and thermal stability, and their elastic constants satisfy the criteria of Born-Huang also indicating the good mechanical stability of these materials for experimental synthesis. Our calculated results indicate that the TiGeSN2 monolayer exhibits indirect-bandgap semiconductor characteristics whereas the ZrGeSN2 and HfGeSN2 monolayers exhibit direct-bandgap semiconductor characteristics. Importantly, the biaxial strain shows significant influences on the electronic energy band structures of the monolayers in the presence of a phase transition from semiconductor to metal, which is an important feature of these materials for their application in electronic devices. All three structures exhibit anisotropic carrier mobility in both x and y transport directions, suggesting their great potential for application in electronic devices.

11.
RSC Adv ; 13(18): 12153-12160, 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37082371

RESUMEN

Group III monochalcogenide compounds can exist in different polymorphs, including the conventional D 3h and C 2h phases. Since the bulk form of the C 2h-group III monochalcogenides has been successfully synthesized [Phys. Rev. B: Condens. Matter Mater. Phys. 73 (2006) 235202], prospects for research on their corresponding monolayers have also been opened. In this study, we design and systematically consider a series of Janus structures formed from the two-dimensional C 2h phase of gallium monochalcogenide Ga2XY (X/Y = S, Se, Te) using first-principles simulations. It is demonstrated that the Janus Ga2XY monolayers are structurally stable and energetically favorable. Ga2XY monolayers exhibit high anisotropic mechanical features due to their anisotropic lattice structure. All Janus Ga2XY are indirect semiconductors with energy gap values in the range from 1.93 to 2.67 eV. Due to the asymmetrical structure, we can observe distinct vacuum level differences between the two surfaces of the examined Janus structures. Ga2XY monolayers have high electron mobility and their carrier mobilities are also highly directionally anisotropic. It is worth noting that the Ga2SSe monolayer possesses superior electron mobility, up to 3.22 × 103 cm2 V-1 s-1, making it an excellent candidate for potential applications in nanoelectronics and nanooptoelectronics.

12.
RSC Adv ; 13(10): 6838-6846, 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36865579

RESUMEN

In this paper, we introduce a new phase of two-dimensional aluminum monochalcogenide, namely C 2h-AlX (X = S, Se, and Te). With the C 2h space group, C 2h-AlX possesses a large unit cell containing 8 atoms. The C 2h phase of AlX monolayers is found to be dynamically and elastically stable based on the evaluation of its phonon dispersions and elastic constants. The anisotropic atomic structure of C 2h-AlX leads to a strong anisotropy in its mechanical properties with Young's modulus and Poisson's ratio strongly dependent on the directions examined in the two-dimensional plane. All three monolayers of C 2h-AlX are found to be direct band gap semiconductors, which are compared with the indirect band gap semiconductors of available D 3h-AlX. Particularly, the transition from direct to indirect band gap is observed in C 2h-AlX when a compressive biaxial strain is applied. Our calculated results indicate that C 2h-AlX exhibits anisotropic optical characteristics and its absorption coefficient is high. Our findings suggest that C 2h-AlX monolayers are suitable for applications in next-generation electro-mechanical and anisotropic opto-electronic nanodevices.

13.
Phys Chem Chem Phys ; 25(12): 8779-8788, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36912122

RESUMEN

Novel Janus materials have attracted broad interest due to the outstanding properties created by their out-of-plane asymmetry, with increasing theoretical exploration and more reports of successful fabrication in recent years. Here, we construct and explore the crystal structures, stabilities, electronic band structures, and transport properties - including carrier mobilities - of two-dimensional Janus MGeSiP4 (M = Ti, Zr, or Hf) monolayers based on density functional theory calculations. From the cohesive energies, elastic constants, and phonon dispersion calculations, the monolayers are confirmed to exhibit structural stability with high feasibility for experimental synthesis. All the structures are indirect band-gap semiconductors with calculated band-gap energies in the range of 0.77 eV to 1.01 eV at the HSE06 (Heyd-Scuseria-Ernzerhof) level. Interestingly, by applying external biaxial strain, a semiconductor to metal phase transition is observed for the three Janus structures. This suggests potential for promising applications in optoelectronic and electromechanical devices. Notably, the MGeSiP4 monolayers show directionally anisotropic carrier mobility with a high electron mobility of up to 2.72 × 103 cm2 V-1 s-1 for the ZrGeSiP4 monolayer, indicating advantages for applications in electronic devices. Hence, the presented results reveal the novel properties of the 2D Janus MGeSiP4 monolayers and demonstrate their great potential applications in nanoelectronic and/or optoelectronic devices. This investigation could stimulate further theoretical and experimental studies on these excellent materials and motivate further explorations of new members of this 2D Janus family.

14.
RSC Adv ; 13(2): 881-887, 2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36686945

RESUMEN

The electronic and optical properties of an AgGaGeS4 crystal were studied by first-principles calculations, where the full-potential augmented plane-wave plus local orbital (APW+lo) method was used together with exchange-correlation pseudopotential described by PBE, PBE+U, and TB-mBJ+U approaches. To verify the correctness of the present theoretical calculations, we have measured for the AgGaGeS4 crystal the XPS valence-band spectrum and the X-ray emission bands representing the energy distribution of the electronic states with the biggest contributions in the valence-band region and compared them on a general energy scale with the theoretical results. Such a comparison indicates that, the calculations within the TB-mBJ+U approach reproduce the electron-band structure peculiarities (density of states - DOS) of the AgGaGeS4 crystal which are in fairly good agreement with the experimental data based on measurements of XPS and appropriate X-ray emission spectra. In particular, the DOS of the AgGaGeS4 crystal is characterized by the existence of well-separated peaks/features in the vicinity of -18.6 eV (Ga-d states) and around -12.5 eV and -7.5 eV, which are mainly composed by hybridized Ge(Ga)-s/p and S-p state. We gained good agreement between the experimental and theoretical data with respect to the main peculiarities of the energy distribution of the electronic S 3p, Ag 4d, Ga 4p and Ge 4p states, the main contributors to the valence band of AgGaGeS4. The bottom of the conduction band is mostly donated by unoccupied Ge-s states, with smaller contributions of unoccupied Ga-s, Ag-s and S-p states, too. The AgGaGeS4 crystal is almost transparent for visible light, but it strongly absorbs ultra-violet light where the significant polarization also occurs.

15.
RSC Adv ; 12(45): 29113-29123, 2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36320756

RESUMEN

The MXene SnSiGeN4 monolayer as a new member of the MoSi2N4 family was proposed for the first time, and its structural and electronic properties were explored by applying first-principles calculations with both PBE and hybrid HSE06 approaches. The layered hexagonal honeycomb structure of SnSiGeN4 was determined to be stable under dynamical effects or at room temperature of 300 K, with a rather high cohesive energy of 7.0 eV. The layered SnSiGeN4 has a Young's modulus of 365.699 N m-1 and a Poisson's ratio of 0.295. The HSE06 approach predicted an indirect band gap of around 2.4 eV for the layered SnSiGeN4. While the major donation from the N-p orbitals to the band structure makes SnSiGeN4's band gap close to those of similar 2D MXenes, the smaller distributions from the other orbitals of Sn, Si, and Ge slightly vary this band gap. The work functions of the GeN and SiN surfaces are 6.367 eV and 5.903 eV, respectively. The band gap of the layered SnSiGeN4 can be easily tuned by strain and an external electric field. A semiconductor-metal transition can occur at certain values of strain, and with an electric field higher than 5 V nm-1. The electron mobility of the layered SnSiGeN4 can reach up to 677.4 cm2 V-1 s-1, which is much higher than the hole mobility of about 52 cm2 V-1 s-1. The mentioned characteristics make the layered SnSiGeN4 a very promising material for use in electronic and photoelectronic devices, and for solar energy conversion.

16.
Phys Chem Chem Phys ; 24(47): 29064-29073, 2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36437803

RESUMEN

The shape of energy dispersions near the band-edges plays a decisive role in the transport properties, especially the carrier mobility, of semiconductors. In this work, we design and investigate the γ phase of tin monoxide and monochalcogenides γ-SnX (X = O, S, Se, and Te) through first-principles simulations. γ-SnX is found to be dynamically stable with phonon dispersions containing only positive phonon frequencies. Due to the hexagonal atomic lattice, the mechanical properties of γ-SnX single-layers are directionally isotropic and their elastic constants meet Born's criterion for mechanical stability. Our calculation results indicate that all four single-layers of γ-SnX are semiconductors with the Mexican-hat dispersions. The biaxial strain not only greatly changes the electronic structures of the γ-SnX single-layers, but also can cause a phase transition from semiconductor to metal. Meanwhile, the effects of an electric field on the electron states of γ-SnX single-layers are insignificant. γ-SnX structures have high electron mobility and their electron mobility is highly directional isotropic along the two transport directions x and y. The findings not only initially introduce the γ phase of group IV-VI compounds, but also serve as a premise for further studies on this material family with potential applications in the future, both theoretically and experimentally.

17.
Phys Chem Chem Phys ; 24(27): 16512-16521, 2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35781308

RESUMEN

We discuss and examine the stability, electronic properties, and transport characteristics of asymmetric monolayers XWGeN2 (X = O, S, Se, Te) using ab initio density functional theory. All four monolayers of quintuple-layer atomic Janus XWGeN2 are predicted to be stable and they are all indirect semiconductors in the ground state. When the spin-orbit coupling (SOC) is included, a large spin splitting at the K point is found in XWGeN2 monolayers, particularly, a giant Rashba-type spin splitting is observed around the Γ point in three structures SWGeN2, SeWGeN2, and TeWGeN2. The Rashba parameters in these structures are directionally isotropic along the high-symmetry directions Γ-K and Γ-M and the Rashba constant αR increases as the X element moves from S to Te. TeWGeN2 has the largest Rashba energy up to 37.4 meV (36.6 meV) in the Γ-K (Γ-M) direction. Via the deformation potential method, we calculate the carrier mobility of all four XWGeN2 monolayers. It is found that the electron mobilities of OWGeN2 and SWGeN2 monolayers exceed 200 cm2 V-1 s-1, which are suitable for applications in nanoelectronic devices.

18.
J Phys Condens Matter ; 34(31)2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35636387

RESUMEN

We present a theory of phonon-drag thermopower,Sxxg, in MoS2monolayer at a low-temperature regime in the presence of a quantizing magnetic fieldB. Our calculations forSxxgconsider the electron-acoustic phonon interaction via deformation potential (DP) and piezoelectric (PE) couplings for longitudinal (LA) and transverse (TA) phonon modes. The unscreened TA-DP is found to dominateSxxgover other mechanisms. TheSxxgis found to oscillate with the magnetic field where the lifting effect of the valley and spin degeneracies in MoS2monolayer has been clearly observed. An enhancedSxxgwith a peak value of∼1mV K-1at aboutT = 10 K is predicted, which is closer to the zero field experimental observation. In the Bloch-Grüneisen regime the temperature dependence ofSxxggives the power-lawSxxg∝Tδe, whereδevaries marginally around 3 and 5 for unscreened and screened couplings, respectively. In addition,Sxxgis smaller for larger electron densityne. The power factor PF is found to increase with temperatureT, decrease withne, and oscillate withB. The prediction of an increase of thermal conductivity with temperature and the magnetic field is responsible for the limit of the figure of merit (ZT). At a particular magnetic field and temperature,ZTcan be maximized by optimizing electron density. By fixingne=1012cm-2, the highestZTis found to be 0.57 atT = 5.8 K andB = 12.1 T. Our findings are compared with those in graphene and MoS2for the zero-magnetic field.

19.
J Phys Condens Matter ; 34(30)2022 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-35545080

RESUMEN

We theoretically study the magneto-optical absorption coefficients (MOACs) and the refractive index changes (RICs) due to both intra- and inter-band transitions in topological insulator (TI) thin films. The interplay between Zeeman energy and hybridization contribution leads to a transition between the normal insulator phase and the TI phase. The difference in the optical response in these two phases as well as at the phase transition point has been analyzed. The influence of the electron density, magnetic field, and temperature on the MOACs and RICs in both intra- and inter-band transitions is investigated. Our results show that the electron density affects directly the threshold energy. At a finite temperature, the thermal excitation causes the triggering of some new transitions which do not appear atT= 0 K. Evidence of the half-peak feature of the first inter-band transition is also found in TI thin films.

20.
RSC Adv ; 12(21): 12971-12977, 2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35497018

RESUMEN

Due to the broken vertical symmetry, the Janus material possesses many extraordinary physico-chemical and mechanical properties that cannot be found in original symmetric materials. In this paper, we study in detail the structural, electronic, and transport properties of 1T Janus PdXO monolayers (X = S, Se, Te) by means of density functional theory. PdXO monolayers are observed to be stable based on the analysis of the vibrational characteristics and molecular dynamics simulations. All three PdXO structures exhibit semiconducting characteristics with indirect bandgap based on evaluations with hybrid functional Heyd-Scuseria-Ernzerhof (HSE06). The influences of the spin-orbit coupling (SOC) on the band diagram of PdXO are strong. Particularly, when the SOC is included, PdTeO is calculated to be metallic by the HSE06+SOC approach. With high electron mobility, Janus PdXO structures have good potential for applications in future nanodevices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...