Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Anal Chem ; 96(23): 9362-9369, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38826107

RESUMEN

Amyloid precursor protein (APP) plays a pivotal role in the pathology of Alzheimer's disease (AD). Since the fragmentation of the membrane-bound APP that results in the production of amyloid-ß peptides is the starting point for amyloid toxicity in AD, it is important to investigate the structure and dynamics of APP in a near-native lipid-bilayer environment. However, the reconstitution of APP into a stable and suitable membrane-mimicking lipid environment is a challenging task. In this study, the 99-residue C-terminal domain of APP is successfully reconstituted into polymer nanodiscs and characterized using size-exclusion chromatography, mass spectrometry, solution NMR, and magic-angle spinning solid-state NMR. In addition, the feasibility of using lipid-solubilizing polymers for isolating and characterizing APP in the native Escherichia. coli membrane environment is demonstrated.


Asunto(s)
Precursor de Proteína beta-Amiloide , Nanoestructuras , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/metabolismo , Nanoestructuras/química , Escherichia coli , Humanos , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Resonancia Magnética Nuclear Biomolecular
2.
bioRxiv ; 2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38659865

RESUMEN

Amyloid precursor protein (APP) plays a pivotal role in the pathology of Alzheimer's disease. Since the fragmentation of the membrane-bound APP that results in the production of amyloid-beta peptides is the starting point for amyloid toxicity in AD, it is important to investigate the structure and dynamics of APP in a near-native lipid-bilayer environment. However, the reconstitution of APP into a stable/suitable membrane-mimicking lipid environment is a challenging task. In this study, the 99-residue C-terminal domain of APP is successfully reconstituted into polymer nanodiscs and characterized using size-exclusion chromatography, mass spectrometry, solution NMR, and magic-angle spinning solid-state NMR. In addition, the feasibility of using lipid-solubilizing polymers for isolating and characterizing APP in native E. coli membrane environment is demonstrated.

3.
Acta Crystallogr E Crystallogr Commun ; 78(Pt 2): 216-219, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-35145754

RESUMEN

In the title polymeric coordination compound, {[FePt(CN)4(H2O)2]·1.33CH3OH} n , the FeII cation (site symmetry 4/mm.m) is coordinated by the N atoms of four cyanide anions (CN-) and the O atoms of two water mol-ecules, forming a nearly regular [FeN4O2] octa-hedron. According the Fe-N and Fe-O bond lengths, the FeII atom is in the high-spin state. The cyanide anions act in a bridging manner to connect the FeII and PtII atoms. The [Pt(CN)4]2- moieties (Pt with site symmetry 4/mm.m) have a perfect square-planar shape. The latter anion is located perpendicular to the FeN4 plane, thus ensuring the creation of a three-dimensional framework. The crystal structure features methanol solvent mol-ecules of which 4/3 were located per FeII cation. These solvent mol-ecules are located in hexa-gonal pores; they inter-act with coordinating water mol-ecules through weak hydrogen bonds. Other guest mol-ecules could not be modelled in a satisfactory way and their contribution to the scattering was removed by a mask procedure.

4.
Inorg Chem ; 61(4): 2093-2104, 2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-35029111

RESUMEN

Two 2D Hofmann-type complexes of the composition [Fe(Phpz)2{M(CN)2}2] (where Phpz = 2-phenylpyrazine; M = Ag, Au) have been synthesized, and their spin-crossover (SCO) behavior has been thoroughly characterized. Single-crystal X-ray analysis reveals that these complexes contain a crystallographically unique Fe(II) center surrounded by two axial Phpz ligands and four equatorial cyanide [M(CN)2]- bridges. It is shown that, using of a ligand with two aromatic rings, an advanced system of weak supramolecular interactions (metal-metal, C-H···M, and π···π stacking contacts) is realized. This ensures additional stabilization of the structures and the absence of solvent-accessible voids due to dense packing. Both complexes are characterized by a highly reproducible two-step SCO behavior, as revealed by different techniques (superconducting quantum interference device magnetometry, optical microscopy, etc.). Research shows the exceptional role of the presence of various supramolecular interactions in the structure and the influence of the bulky substituent in the ligand on SCO behavior. Moreover, the perspective of substituted pyrazines for the design of new switchable materials is supported by this work.

5.
Dalton Trans ; 50(26): 9250-9258, 2021 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-34128522

RESUMEN

Hofmann-like cyanometallic complexes represent one of the biggest and well-known classes of FeII spin-crossover compounds. In this paper, we report on the first FeII Hofmann clathrate analogues with unsubstituted 1,2,3-triazole, which exhibit temperature induced spin transition. Two new coordination polymers with the general formula [FeII(1,2,3-triazole)2MII(CN)4] (M = Pt, Pd) undergo abrupt hysteretic spin crossover in the range of 190-225 K as revealed by magnetic susceptibility measurements. Two compounds are isostructural and are built of infinite cyanometallic layers which are supported by 1,2,3-triazole ligands. The thermal hysteresis loop is very stable at different scan rates from 0.5 to 10 K min-1. The compounds display strong thermochromic effect, changing their colour from pink in the low-spin state to white in the high-spin state. Our findings show that 1,2,3-triazole is suitable for elaboration of spin-crossover Hofmann clathrate analogues, and its use instead of more classical azines can advantageously expand this family of complexes.

6.
Dalton Trans ; 49(16): 5302-5311, 2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-32242883

RESUMEN

Two new 2D spin-crossover (SCO) analogues of Hofmann clathrates of composition [Fe(phth)2MII(CN)4] (where phth = phthalazine; MII = Pd, Pt) have been synthesized and their structures and switchable behaviour have been characterized. Single-crystal X-ray analysis reveals that the Pt and Pd derivatives contain FeII centres equatorially surrounded by four equivalent µ4-[MII(CN)4]2- groups. Two crystallographically equivalent phthalazine (phth) ligands occupy the axial positions of each FeII site, completing its octahedral coordination environment. The stabilization of these structures is realized via supramolecular C-HM interactions and π-π stacking. Temperature-dependent magnetic susceptibility measurements showed that Pt (T1/2↓ = 211 K and T1/2↑ = 218 K) and Pd (T1/2↓ = 202 K and T1/2↑ = 207 K) derivatives display cooperative spin crossover with narrow thermal hysteresis loops. In addition, spin crossover in these complexes was characterized by optical measurements, differential scanning calorimetry, and IR and Raman spectroscopy. This research shows that the use of phthalazine leads to the production of new SCO systems with attractive transition characteristics and opens up new perspectives for the design of switchable complexes based on fused bicyclic azine ligands.

7.
Chem Commun (Camb) ; 55(23): 3359-3362, 2019 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-30816373

RESUMEN

A new iron(ii)-based spin-crossover compound with thermal hysteresis operating under ambient conditions is reported. This complex exhibits a high reproducibility of the spin transition in many successive thermal cycles, stability of both spin states at room temperature and an attractive operational temperature range.

8.
Acta Crystallogr E Crystallogr Commun ; 73(Pt 12): 1977-1980, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29250428

RESUMEN

In the title polymeric complex, {[Fe(C12H10N2)2(H2O)4](CH3C6H4SO3)2·2CH3OH} n , the FeII cation, located on an inversion centre, is coordinated by four water mol-ecules in the equatorial positions and two 1,2-bis-(pyridin-4-yl)ethene mol-ecules in the axial positions. This results in a distorted octa-hedral geometry for the [N2O4] coordination polyhedron. The 1,2-bis-(pyridin-4-yl)ethene mol-ecules bridge the FeII cations, forming polymeric chains running along the a-axis direction. Stabilization of the crystal structure is provided by O-H⋯O hydrogen bonds; these are formed by coordinated water mol-ecules as donors towards the O atoms of the methanol mol-ecules and tosyl-ate anions as acceptors of protons, leading to the formation of a three-dimensional supra-molecular network. Weak C-H⋯O hydrogen bonds are also observed in the crystal.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...