Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 41(9): 111719, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36450253

RESUMEN

Diabetogenic ablation of beta cells in mice triggers a regenerative response whereby surviving beta cells proliferate and euglycemia is regained. Here, we identify and characterize heterogeneity in response to beta cell ablation. Efficient beta cell elimination leading to severe hyperglycemia (>28 mmol/L), causes permanent diabetes with failed regeneration despite cell cycle engagement of surviving beta cells. Strikingly, correction of glycemia via insulin, SGLT2 inhibition, or a ketogenic diet for about 3 weeks allows partial regeneration of beta cell mass and recovery from diabetes, demonstrating regenerative potential masked by extreme glucotoxicity. We identify gene expression changes in beta cells exposed to extremely high glucose levels, pointing to metabolic stress and downregulation of key cell cycle genes, suggesting failure of cell cycle completion. These findings reconcile conflicting data on the impact of glucose on beta cell regeneration and identify a glucose threshold converting glycemic load from pro-regenerative to anti-regenerative.


Asunto(s)
Diabetes Mellitus , Hiperglucemia , Células Secretoras de Insulina , Animales , Ratones , Control Glucémico , Glucosa
2.
Diabetes ; 67(6): 1079-1085, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29475831

RESUMEN

Bariatric surgery dramatically improves glycemic control, yet the underlying molecular mechanisms remain controversial because of confounding weight loss. We performed sleeve gastrectomy (SG) on obese and diabetic leptin receptor-deficient mice (db/db). One week postsurgery, mice weighed 5% less and displayed improved glycemia compared with sham-operated controls, and islets from SG mice displayed reduced expression of diabetes markers. One month postsurgery SG mice weighed more than preoperatively but remained near-euglycemic and displayed reduced hepatic lipid droplets. Pair feeding of SG and sham db/db mice showed that surgery rather than weight loss was responsible for reduced glycemia after SG. Although insulin secretion profiles from islets of sham and SG mice were indistinguishable, clamp studies revealed that SG causes a dramatic improvement in muscle and hepatic insulin sensitivity accompanied by hepatic regulation of hepatocyte nuclear factor-α and peroxisome proliferator-activated receptor-α targets. We conclude that long-term weight loss after SG requires leptin signaling. Nevertheless, SG elicits a remarkable improvement in glycemia through insulin sensitization independent of reduced feeding and weight loss.


Asunto(s)
Cirugía Bariátrica , Diabetes Mellitus Tipo 2/complicaciones , Gastrectomía , Hiperglucemia/prevención & control , Resistencia a la Insulina , Hígado/metabolismo , Obesidad Mórbida/cirugía , Animales , Biomarcadores/sangre , Biomarcadores/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Técnica de Clampeo de la Glucosa , Humanos , Insulina/sangre , Insulina/metabolismo , Secreción de Insulina , Leptina/genética , Leptina/metabolismo , Gotas Lipídicas/metabolismo , Gotas Lipídicas/patología , Hígado/enzimología , Hígado/patología , Análisis por Apareamiento , Ratones Mutantes , Músculo Esquelético/metabolismo , Obesidad Mórbida/complicaciones , Obesidad Mórbida/metabolismo , Obesidad Mórbida/patología , Páncreas/metabolismo , Páncreas/patología , Aumento de Peso , Pérdida de Peso
3.
Sci Rep ; 6: 31222, 2016 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-27526875

RESUMEN

Type 2 Diabetes (T2DM) affects more than 300 million people worldwide. One of the hallmarks of T2DM is peripheral insulin resistance, in part due to unproductive insulin signaling through the insulin receptor. The insulin receptor (INSR) exists as two isoforms, INSR-A and INSR-B, which results from skipping or inclusion of exon 11 respectively. What determines the relative abundance of the different insulin receptor splice variants is unknown. Moreover, it is not yet clear what the physiological roles of each of the isoforms are in normal and diseased beta cells. In this study, we show that insulin induces INSR exon 11 inclusion in pancreatic beta cells in both human and mouse. This occurs through activation of the Ras-MAPK/ERK signaling pathway and up-regulation of the splicing factor SRSF1. Induction of exon 11 skipping by a splice-site competitive antisense oligonucleotide inhibited the MAPK-ERK signaling pathway downstream of the insulin receptor, sensitizing the pancreatic ß-cell line MIN6 to stress-induced apoptosis and lipotoxicity. These results assign to insulin a regulatory role in INSR alternative splicing through the Ras-MAPK/ERK signaling pathway. We suggest that in beta cells, INSR-B has a protective role, while INSR-A expression sensitizes beta cells to programmed cell death.


Asunto(s)
Empalme Alternativo , Antígenos CD/biosíntesis , Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Sistema de Señalización de MAP Quinasas , Receptor de Insulina/biosíntesis , Animales , Antígenos CD/genética , Línea Celular Tumoral , Supervivencia Celular , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Humanos , Insulina/genética , Células Secretoras de Insulina/patología , Ratones , Receptor de Insulina/genética
4.
Cell Metab ; 19(1): 109-21, 2014 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-24332968

RESUMEN

ß cell failure in type 2 diabetes (T2D) is associated with hyperglycemia, but the mechanisms are not fully understood. Congenital hyperinsulinism caused by glucokinase mutations (GCK-CHI) is associated with ß cell replication and apoptosis. Here, we show that genetic activation of ß cell glucokinase, initially triggering replication, causes apoptosis associated with DNA double-strand breaks and activation of the tumor suppressor p53. ATP-sensitive potassium channels (KATP channels) and calcineurin mediate this toxic effect. Toxicity of long-term glucokinase overactivity was confirmed by finding late-onset diabetes in older members of a GCK-CHI family. Glucagon-like peptide-1 (GLP-1) mimetic treatment or p53 deletion rescues ß cells from glucokinase-induced death, but only GLP-1 analog rescues ß cell function. DNA damage and p53 activity in T2D suggest shared mechanisms of ß cell failure in hyperglycemia and CHI. Our results reveal membrane depolarization via KATP channels, calcineurin signaling, DNA breaks, and p53 as determinants of ß cell glucotoxicity and suggest pharmacological approaches to enhance ß cell survival in diabetes.


Asunto(s)
Hiperinsulinismo Congénito/complicaciones , Roturas del ADN de Doble Cadena , Diabetes Mellitus Tipo 2/complicaciones , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Proteína p53 Supresora de Tumor/metabolismo , Animales , Biomarcadores/metabolismo , Calcineurina/metabolismo , Muerte Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Hiperinsulinismo Congénito/enzimología , Hiperinsulinismo Congénito/patología , Roturas del ADN de Doble Cadena/efectos de los fármacos , Diabetes Mellitus Tipo 2/enzimología , Diabetes Mellitus Tipo 2/patología , Modelos Animales de Enfermedad , Activación Enzimática/efectos de los fármacos , Inducción Enzimática/efectos de los fármacos , Ayuno/metabolismo , Péptido 1 Similar al Glucagón/farmacología , Glucoquinasa/biosíntesis , Glucosa/toxicidad , Humanos , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/enzimología , Potenciales de la Membrana/efectos de los fármacos , Ratones , Transgenes
5.
Diabetes ; 63(2): 578-84, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24130333

RESUMEN

Most of our knowledge on cell kinetics stems from in vitro studies of continuously dividing cells. In this study, we determine in vivo cell-cycle parameters of pancreatic ß-cells, a largely quiescent population, using drugs that mimic or prevent glucose-induced replication of ß-cells in mice. Quiescent ß-cells exposed to a mitogenic glucose stimulation require 8 h to enter the G1 phase of the cell cycle, and this time is prolonged in older age. The duration of G1, S, and G2/M is ~5, 8, and 6 h, respectively. We further provide the first in vivo demonstration of the restriction point at the G0-G1 transition, discovered by Arthur Pardee 40 years ago. The findings may have pharmacodynamic implications in the design of regenerative therapies aimed at increasing ß-cell replication and mass in patients with diabetes.


Asunto(s)
Fase G1/fisiología , Células Secretoras de Insulina/fisiología , Fase de Descanso del Ciclo Celular/fisiología , Animales , Glucoquinasa , Masculino , Ratones , Ratones Endogámicos ICR , Fase S/fisiología
6.
PLoS One ; 8(8): e70397, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23940571

RESUMEN

Neurogenin3(+) (Ngn3(+)) progenitor cells in the developing pancreas give rise to five endocrine cell types secreting insulin, glucagon, somatostatin, pancreatic polypeptide and ghrelin. Gastrin is a hormone produced primarily by G-cells in the stomach, where it functions to stimulate acid secretion by gastric parietal cells. Gastrin is expressed in the embryonic pancreas and is common in islet cell tumors, but the lineage and regulators of pancreatic gastrin(+) cells are not known. We report that gastrin is abundantly expressed in the embryonic pancreas and disappears soon after birth. Some gastrin(+) cells in the developing pancreas co-express glucagon, ghrelin or pancreatic polypeptide, but many gastrin(+) cells do not express any other islet hormone. Pancreatic gastrin(+) cells express the transcription factors Nkx6.1, Nkx2.2 and low levels of Pdx1, and derive from Ngn3(+) endocrine progenitor cells as shown by genetic lineage tracing. Using mice deficient for key transcription factors we show that gastrin expression depends on Ngn3, Nkx2.2, NeuroD1 and Arx, but not Pax4 or Pax6. Finally, gastrin expression is induced upon differentiation of human embryonic stem cells to pancreatic endocrine cells expressing insulin. Thus, gastrin(+) cells are a distinct endocrine cell type in the pancreas and an alternative fate of Ngn3+ cells.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Gastrinas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Páncreas/embriología , Páncreas/metabolismo , Células Madre/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Citometría de Flujo , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra
7.
J Biol Chem ; 287(33): 27407-14, 2012 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-22740691

RESUMEN

Recent studies suggested that in old mice, beta cells lose their regenerative potential and cannot respond to mitogenic triggers. These studies examined beta cell replication in aged mice under basal conditions and in response to specific stimuli including treatment with the glucagon-like peptide-1 analog exenatide, streptozotocin injection, partial pancreatectomy, and high fat diet. However, it remains possible that the ability to mount a compensatory response of beta cells is retained in old age, but depends on the specific stimulus. Here, we asked whether partial ablation of beta cells in transgenic mice, using doxycycline-inducible expression of diphtheria toxin, triggers a significant compensatory proliferative response in 1-2-year-old animals. Consistent with previous reports, the basal rate of beta cell replication declines dramatically with age, averaging 0.1% in 2-year-old mice. Transient expression of diphtheria toxin in beta cells of old mice resulted in impaired glucose homeostasis and disruption of islet architecture (ratio of beta to alpha cells). Strikingly, the replication rate of surviving beta cells increased 3-fold over basal rate, similarly to the -fold increase in replication rate of beta cells in young transgenic mice. Islet architecture and glucose tolerance slowly normalized, indicating functional significance of compensatory beta cell replication in this setting. Finally, administration of a small molecule glucokinase activator to old mice doubled the frequency of beta cell replication, further showing that old beta cells can respond to the mitogenic trigger of enhanced glycolysis. We conclude that the potential for functionally significant compensatory proliferation of beta cells is retained in old mice, despite a decline in basal replication rate.


Asunto(s)
Envejecimiento/fisiología , Proliferación Celular , Glucosa/metabolismo , Células Secretoras de Insulina/metabolismo , Animales , Toxina Diftérica/biosíntesis , Toxina Diftérica/genética , Activadores de Enzimas/farmacología , Expresión Génica , Glucoquinasa/genética , Glucoquinasa/metabolismo , Glucosa/genética , Prueba de Tolerancia a la Glucosa , Células Secretoras de Insulina/citología , Ratones , Ratones Transgénicos , Transgenes
8.
Development ; 138(21): 4743-52, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21965615

RESUMEN

How organ size and form are controlled during development is a major question in biology. Blood vessels have been shown to be essential for early development of the liver and pancreas, and are fundamental to normal and pathological tissue growth. Here, we report that, surprisingly, non-nutritional signals from blood vessels act to restrain pancreas growth. Elimination of endothelial cells increases the size of embryonic pancreatic buds. Conversely, VEGF-induced hypervascularization decreases pancreas size. The growth phenotype results from vascular restriction of pancreatic tip cell formation, lateral branching and differentiation of the pancreatic epithelium into endocrine and acinar cells. The effects are seen both in vivo and ex vivo, indicating a perfusion-independent mechanism. Thus, the vasculature controls pancreas morphogenesis and growth by reducing branching and differentiation of primitive epithelial cells.


Asunto(s)
Vasos Sanguíneos/fisiología , Diferenciación Celular/fisiología , Organogénesis/fisiología , Páncreas/anatomía & histología , Páncreas/irrigación sanguínea , Páncreas/embriología , Animales , Vasos Sanguíneos/anatomía & histología , Células Epiteliales/citología , Células Epiteliales/fisiología , Epitelio/embriología , Ratones , Ratones Transgénicos , Técnicas de Cultivo de Órganos , Páncreas/crecimiento & desarrollo , Fenotipo , Receptores Notch/genética , Receptores Notch/metabolismo , Transducción de Señal/fisiología , Factor A de Crecimiento Endotelial Vascular/metabolismo
9.
Cell Metab ; 13(4): 440-449, 2011 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-21459328

RESUMEN

Recent studies revealed a surprising regenerative capacity of insulin-producing ß cells in mice, suggesting that regenerative therapy for human diabetes could in principle be achieved. Physiologic ß cell regeneration under stressed conditions relies on accelerated proliferation of surviving ß cells, but the factors that trigger and control this response remain unclear. Using islet transplantation experiments, we show that ß cell mass is controlled systemically rather than by local factors such as tissue damage. Chronic changes in ß cell glucose metabolism, rather than blood glucose levels per se, are the main positive regulator of basal and compensatory ß cell proliferation in vivo. Intracellularly, genetic and pharmacologic manipulations reveal that glucose induces ß cell replication via metabolism by glucokinase, the first step of glycolysis, followed by closure of K(ATP) channels and membrane depolarization. Our data provide a molecular mechanism for homeostatic control of ß cell mass by metabolic demand.


Asunto(s)
Glucemia/metabolismo , Células Secretoras de Insulina/fisiología , Regeneración , Animales , Membrana Celular/fisiología , Proliferación Celular , Glucoquinasa/antagonistas & inhibidores , Glucoquinasa/metabolismo , Glucólisis , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/trasplante , Canales KATP/metabolismo , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...