Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Pharmaceuticals (Basel) ; 17(5)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38794144

RESUMEN

Globally, cancer is one of the primary causes of both morbidity and mortality. To prevent cancer from getting worse, more targeted and efficient treatment plans must be developed immediately. Recent research has demonstrated the benefits of natural products for several illnesses, and these products have played a significant role in the development of novel treatments whose bioactive components serve as both chemotherapeutic and chemo-preventive agents. Phytochemicals are naturally occurring molecules obtained from plants that have potential applications in both cancer therapy and the development of new medications. These phytochemicals function by regulating the molecular pathways connected to the onset and progression of cancer. Among the specific methods are immune system control, inducing cell cycle arrest and apoptosis, preventing proliferation, raising antioxidant status, and inactivating carcinogens. A thorough literature review was conducted using Google Scholar, PubMed, Scopus, Google Patent, Patent Scope, and US Patent to obtain the data. To provide an overview of the anticancer effects of several medicinal plants, including Annona muricata, Arctium lappa, Arum palaestinum, Cannabis sativa, Catharanthus roseus, Curcuma longa, Glycyrrhiza glabra, Hibiscus, Kalanchoe blossfeldiana, Moringa oleifera, Nerium oleander, Silybum marianum, Taraxacum officinale, Urtica dioica, Withania somnifera L., their availability, classification, active components, pharmacological activities, signaling mechanisms, and potential side effects against the most common cancer types were explored.

2.
Antibiotics (Basel) ; 13(4)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38666976

RESUMEN

The development of new and effective antimicrobial compounds is urgent due to the emergence of resistant bacteria. Natural plant flavonoids are known to be effective molecules, but their activity and selectivity have to be increased. Based on previous aurone potency, we designed new aurone derivatives bearing acetamido and amino groups at the position 5 of the A ring and managing various monosubstitutions at the B ring. A series of 31 new aurone derivatives were first evaluated for their antimicrobial activity with five derivatives being the most active (compounds 10, 12, 15, 16, and 20). The evaluation of their cytotoxicity on human cells and of their therapeutic index (TI) showed that compounds 10 and 20 had the highest TI. Finally, screening against a large panel of pathogens confirmed that compounds 10 and 20 possess large spectrum antimicrobial activity, including on bioweapon BSL3 strains, with MIC values as low as 0.78 µM. These results demonstrate that 5-acetamidoaurones are far more active and safer compared with 5-aminoaurones, and that benzyloxy and isopropyl substitutions at the B ring are the most promising strategy in the exploration of new antimicrobial aurones.

3.
Molecules ; 28(22)2023 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-38005261

RESUMEN

Catalytic transfer hydrogenation has emerged as a pivotal chemical process with transformative potential in various industries. This review highlights the significance of catalytic transfer hydrogenation, a reaction that facilitates the transfer of hydrogen from one molecule to another, using a distinct molecule as the hydrogen source in the presence of a catalyst. Unlike conventional direct hydrogenation, catalytic transfer hydrogenation offers numerous advantages, such as enhanced safety, cost-effective hydrogen donors, byproduct recyclability, catalyst accessibility, and the potential for catalytic asymmetric transfer hydrogenation, particularly with chiral ligands. Moreover, the diverse range of hydrogen donor molecules utilized in this reaction have been explored, shedding light on their unique properties and their impact on catalytic systems and the mechanism elucidation of some reactions. Alcohols such as methanol and isopropanol are prominent hydrogen donors, demonstrating remarkable efficacy in various reductions. Formic acid offers irreversible hydrogenation, preventing the occurrence of reverse reactions, and is extensively utilized in chiral compound synthesis. Unconventional donors such as 1,4-cyclohexadiene and glycerol have shown a good efficiency in reducing unsaturated compounds, with glycerol additionally serving as a green solvent in some transformations. The compatibility of these donors with various catalysts, substrates, and reaction conditions were all discussed. Furthermore, this paper outlines future trends which include the utilization of biomass-derived hydrogen donors, the exploration of hydrogen storage materials such as metal-organic frameworks (MOFs), catalyst development for enhanced activity and recyclability, and the utilization of eco-friendly solvents such as glycerol and ionic liquids. Innovative heating methods, diverse base materials, and continued research into catalyst-hydrogen donor interactions are aimed to shape the future of catalytic transfer hydrogenation, enhancing its selectivity and efficiency across various industries and applications.

4.
Front Pharmacol ; 14: 1201969, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37593172

RESUMEN

Pancreatic cancer is a highly aggressive malignancy and a leading cause of cancer-related deaths worldwide. Moreover, the incidence and mortality rates for pancreatic cancer are projected to keep increasing. A major challenge in the treatment of pancreatic cancer is the lack of effective screening approaches, which contributes to its poor prognosis, indicating the need for new treatment regimens and alternative therapies, such as herbal medicine. The medicinal plant A. strigosa, which is widely distributed in the Eastern Mediterranean region, is a short prickly plant from the Boraginaceae family that has been widely used in traditional medicine for treating various diseases. Nevertheless, its effect on human pancreatic cancer remains poorly investigated. In the present study, we screened the phytochemical content of Anchusa strigosa aqueous extracts obtained by maceration and ultrasound-assisted methods (ASM and ASU, respectively) and evaluated their antioxidant effects. We also investigated their anticancer effects and possible underlying mechanisms. The results show that both extracts were rich in bioactive molecules, with slight differences in their composition. Both extracts exhibited remarkable antioxidant potential and potent radical-scavenging activity in vitro. Additionally, non-cytotoxic concentrations of both extracts attenuated cell proliferation in a time- and concentration-dependent manner, which was associated with a decrease in the proliferation marker Ki67 and an induction of the intrinsic apoptotic pathway. Furthermore, the extracts increased the aggregation of pancreatic cancer cells and reduced their migratory potential, with a concomitant downregulation of integrin ß1. Finally, we showed that the ASM extract caused a significant decrease in the levels of COX-2, an enzyme that has been linked to inflammation, carcinogenesis, tumor progression, and metastasis. Taken together, our findings provide evidence that A. strigosa extracts, particularly the extract obtained using the maceration method, have a potential anticancer effect and may represent a new resource for the design of novel drugs against pancreatic cancer.

5.
Life (Basel) ; 13(2)2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36836674

RESUMEN

The skin serves as the body's first line of defense, guarding against mechanical, chemical, and thermal damage to the interior organs. It includes a highly developed immune response that serves as a barrier against pathogenic infections. Wound healing is a dynamic process underpinned by numerous cellular activities, including homeostasis, inflammation, proliferation, and remodeling, that require proper harmonious integration to effectively repair the damaged tissue. Following cutaneous damage, microorganisms can quickly enter the tissues beneath the skin, which can result in chronic wounds and fatal infections. Natural phytomedicines that possess considerable pharmacological properties have been widely and effectively employed forwound treatment and infection prevention. Since ancient times, phytotherapy has been able to efficiently treat cutaneous wounds, reduce the onset of infections, and minimize the usage of antibiotics that cause critical antibiotic resistance. There are a remarkable number of wound-healing botanicals that have been widely used in the Northern Hemisphere, including Achiella millefolium, Aloe vera, Althaea officinalis, Calendula officinalis, Matricaria chamomilla, Curcuma longa, Eucalyptus, Jojoba, plantain, pine, green tea, pomegranate, and Inula. This review addresses the most often used medicinal plants from the Northern Hemisphere that facilitate the treatment of wounds, and also suggests viable natural alternatives that can be used in the field of wound care.

6.
Polymers (Basel) ; 14(23)2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36501655

RESUMEN

In order to discuss the polymerization effect from the substituted position and methoxy group of Type I photinitiators, a series of naphthalene-based oxime esters was designed and synthesized. Compared to the 2-naphthalene-substituted compound, the UV absorption region of the 1-naphthalene-based compound was greatly improved. In addition, the methoxy substitution exhibited longer absorption characteristics than did the methoxy-free one. The photochemical reaction behavior of these novel compounds was also studied by photolysis, cyclic voltammetry (CV), and electron spin resonance (ESR) experiments. Finally, the initiation abilities of naphthalene-based oxime esters toward trimethylolpropane triacrylate (TMPTA) monomer were conducted through the photo-DSC instrument under UV and a 405@nm LED lamp. Remarkedly, the naphthalene-based oxime ester (NA-3) that contains 1-naphthalene with o-methoxy substituent showed the rather red-shifted absorption region with the highest final conversion efficiency under UV (46%) and 405@nm LED (41%) lamp irradiation.

7.
Front Biosci (Landmark Ed) ; 27(9): 259, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36224017

RESUMEN

BACKGROUND: Tomato pomace (TP) is a coproduct generated by the extraction of tomato pulp, and is a potential source of bioactive molecules. In this study, we isolated several fractions from TP and evaluated their biological properties. MATERIALS AND METHODS: TP was treated by maceration at room temperature with green solvents (ethanol, ethyl acetate, ethanol:water and ethanol:ethyl acetate) or supercritical CO2 (SC-CO2). The extracts were analyzed by HPLC-DAD to determine their composition, and their antioxidant activity was assessed. The potential therapeutic effects of the isolated fractions were assessed in vitro. RESULTS: We identified 30 molecules on chromatography profiles, which revealed an abundance in phenolic acids, carotenoids, flavonoids and tannins, with differences in selectivity according to the solvent and pretreatment used. The highest radical scavenging activities were measured at 64-72% inhibition, corresponding to the ethanol or ethanol:water extracts with the highest polyphenol or flavonoid contents. Carotenoid content was increased by chemical pretreatment, to attain levels of 161 mg ß-carotene/g ethyl acetate extract. This level of carotenoids seemed to have anti-inflammatory effects, with an IC50 of 9.3 µg/mL. In terms of anti-diabetic effects, the activities of α-glucosidase and α-amylase were best inhibited by extraction in an ethanol-to-water mixture (50:50). Cytotoxicity in a tumor cell line were highest for SC-CO2 extracts (64.5% inhibition) and for ethanol extracts obtained after the enzymatic pretreatment of TP (37% inhibition). Some extracts also had dose-dependent activity against Zika virus. CONCLUSIONS: New fractions obtained from TP with ecocompatible solvents in mild conditions are rich in bioactive molecules. A comparison of the chromatographic profiles of the extracts led to the identification of several key molecules with therapeutic properties. The chemical pretreatment of TP is justified as a mean of increasing the carotenoid content of ethyl acetate fractions, whereas enzymatic pretreatment can increase the antioxidant activity of ethyl acetate fractions and increase the cytotoxicity of ethanol fractions. The SC-CO2 fraction contained a smaller number of metabolites detectable on HPLC, but it had high levels of cytotoxicity and antioxidant activity. Finally, the fractions obtained appeared to be suitable for use to target one or several of the biological activities studied.


Asunto(s)
Antioxidantes , Solanum lycopersicum , Acetatos , Antiinflamatorios/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Dióxido de Carbono , Etanol , Flavonoides/farmacología , Humanos , Fenoles/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Polifenoles , Solventes/análisis , Solventes/química , Taninos/análisis , Agua , alfa-Amilasas , alfa-Glucosidasas , beta Caroteno
8.
Int J Biol Macromol ; 209(Pt A): 1100-1110, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35461856

RESUMEN

Polysaccharides are extracted from Ornithogalum by maceration using different ultrasound (US) treatment times (0%US, 50%US, 100%US), and under optimized extraction conditions (OP%US). The total carbohydrates content (TCC) and proteins content of the extracts were determined. Data show that the extraction parameters significantly influence the extracts composition. Rheological measurements allowed determining the liquid, intermediate and gel states of the extract's solutions. The adhesion strength of the solutions was evaluated on paper and polylactide (PLA) substrates to evaluate their potential as environmentally friendly adhesive. OP%US presents the highest adhesion strength (1418.3 kPa) on paper, and is further tested on pork skin substrates. The adhesion strength is higher on skin/paper (870 kPa) than on skin/skin (411 kPa) substrate due to the capillary force of paper which allows penetration of adhesive into the micropores of paper. The correlation between rheological properties and adhesion strength indicates that the adhesion strength strongly depends on the state of adhesives and the substrate type. SEM analyses show that higher adhesion strength (intermediate and gel states) involves both cohesive and adhesive failure, whereas only adhesive failure is observed in liquid state on PLA substrates. Therefore, these polysaccharides extracts could be very promising as tissue adhesive in medical applications.


Asunto(s)
Adhesivos , Ornithogalum , Extractos Vegetales , Poliésteres , Polisacáridos/química
9.
RSC Adv ; 12(17): 10186-10197, 2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35424999

RESUMEN

The accumulation of heavy metals and dyes in wastewater is a persistent environmental threat with serious hazards consequences affecting all living organisms. Their removal has become a challenging environmental requirement. Adsorption using agricultural waste is one of the cost-effective removal techniques in which the biomass can be valorized. In this study, two adsorbents were prepared and compared in removing copper, cadmium, and methylene blue from water: citrus Sinensis peel (CP) and its activated carbon (AC). Many physical and chemical properties of the prepared adsorbents were investigated using several techniques. Various operational parameters such as initial adsorbate concentration, contact time, pH, adsorbent mass, and temperature were examined. The optimum uptake of Cd, Cu, and MB was obtained after 2 h contact time by using 0.25 g of adsorbent and 400 mg L-1 metal ions or 100 mg L-1 MB initial concentration at pH 5 (for metal ions only) and temperature of 25 °C. Slight superiority for the CP was seen. Furthermore, isothermal models were resolved in all the studied cases. Unlike for MB, the Langmuir model is more applicable for the adsorption of the cations on both adsorbents with maximum adsorption of 80 mg g-1 of Cd(ii) on CP. Finally, the adsorbents achieved good reuse performance, especially for CP which can be used up to 4 times to remove the metal ions, proving that they are low-cost and environmentally friendly materials able to remove inorganic and organic contaminants from water.

10.
Biol Trace Elem Res ; 200(11): 4608-4614, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35048269

RESUMEN

To explore the correlation of AL-based food consumption, known to have negative impact on health, and Al plasma levels with pregnancy status. A cross-sectional study was conducted on 75 participants, including 50 pregnant women. Al plasma levels were analyzed by ET-AAS. Exposure to food was positively correlated to Al mean plasma levels (reaching 2.12 ± 1.17 µg/L) by 32%, specifically for potatoes, fruits, soft drinks, and ready meals. Usage of Al cookware was associated to higher Al plasma levels while pregnancy status was protective. Establishment of national recommendation to maintain lower levels of Al in food is required.


Asunto(s)
Aluminio , Mujeres Embarazadas , Estudios Transversales , Femenino , Humanos , Embarazo
11.
J Inorg Biochem ; 226: 111627, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34689079

RESUMEN

This paper deals with the biological potential of coordination compounds based on binuclear core [MoV2O2E2]2+ (E = O or S) coordinated with commercially available ligands such as oxalates (Ox2-), L-cysteine (L-cys2-), L-histidine (L-his-), Iminodiacetate (IDA2-), Nitrilotriacetate (HNTA2- or NTA3-) or ethylenediamine tetraacetate (EDTA4-) by means of various in vitro assays in a screening approach. Results suggest that the obtained complexes show weak antibacterial and antifungal properties while not being cytotoxic on cancerous and mammalian cells. In contrast, [Mo2O2E2(L-cys)2]2- complexes stand out as powerful antioxidant, whereas [Mo2O2E2(EDTA)]2- associating tetraphenylphosphonium counter-cations display strong antibiotic activity. Finally, some complexes have evidenced a positive activity towards the growing of spirulina platensis together with a modification of the proportions of biological components inside the cells. These findings reveal promising bioactivity of the bridged binuclear Mo(+V) cores inside complexes and encourage further research for new highly active yet non-toxic molecules for biological and biomedical applications.


Asunto(s)
Antibacterianos , Antifúngicos , Antineoplásicos , Antioxidantes , Biomasa , Complejos de Coordinación , Spirulina/crecimiento & desarrollo , Antibacterianos/síntesis química , Antibacterianos/química , Antibacterianos/farmacología , Antifúngicos/síntesis química , Antifúngicos/química , Antifúngicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/farmacología , Antioxidantes/síntesis química , Antioxidantes/química , Antioxidantes/farmacología , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Humanos , Molibdeno/química
12.
Photochem Photobiol ; 98(4): 773-782, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34674274

RESUMEN

In this work, free radical photopolymerization (FRP) kinetics for series of different phenylamine oxime ester structures (DMA-P, DEA-P, DMA-M, TP-2P, TP-2M and TP-3M) was investigated. Steric hindrance and branched substituents were prepared to realize the corresponding electronic and photopolymerization effects. The photophysical, electrochemical, thermal properties and radical concentration were investigated by UV-visible spectroscopy, cyclic voltammetry (CV), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and electron paramagnetic resonance (EPR). Furthermore, the structure-reactivity relationships were also studied in detail through photo-DSC experiment. We demonstrate that the introduction of alkyl chains and/or numbers of oxime esters affects significantly the photoreactivity. Under the same weight ratio of formulation and irradiated condition, TP-3M containing three oxime esters in its structure and methyl group in the periphery exhibits the highest double-bond conversion efficiency. TP-3M-based formulation also shows a wide operation window under different contents and light intensities. Importantly, the photoreactivity of the TP-3M-based system was found to be better than the commercial photoinitiator (OXE-01) under LED@405 nm at a low concentration. This work could provide some significance to the design of oxime esters with enhanced photoreactivity.


Asunto(s)
Ésteres , Oximas , Compuestos de Anilina , Rastreo Diferencial de Calorimetría , Luz , Oximas/química
13.
Molecules ; 26(15)2021 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-34361588

RESUMEN

Psophocarpus tetragonolobus has long been used in traditional medicine and cuisine. In this study, Psophocarpus tetragonolobus extracts were isolated by maceration and ultrasound-assisted extraction and were evaluated for their antioxidant and anti-inflammatory effects in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. The obtained results show that both extracts (maceration and ultrasound) were rich in bioactive molecules and exerted substantial antioxidant and anti-inflammatory effects. The P. tetragonolobus extracts' treatment in LPS-stimulated RAW264.7 macrophages resulted in a significant downregulation of the expressions of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-1ß mRNA. In addition, the P. tetragonolobus extracts' treatment attenuated inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein expression. Our observations indicate that there is no significant difference between the two studied extracts of P. tetragonolobus in terms of biological properties (specifically, antioxidant and anti-inflammatory effects. Regardless of the extraction method, P. tetragonolobus could be used for treating diseases related to oxidative stress and inflammatory reactions.


Asunto(s)
Antiinflamatorios , Antioxidantes , Fabaceae/química , Macrófagos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales , Animales , Antiinflamatorios/química , Antiinflamatorios/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Citocinas/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/patología , Lipopolisacáridos/toxicidad , Ratones , Extractos Vegetales/química , Extractos Vegetales/farmacología , Células RAW 264.7 , Ondas Ultrasónicas
14.
Molecules ; 26(4)2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33562701

RESUMEN

Chronic cerebral ischemia with a notable long-term cessation of blood supply to the brain tissues leads to sensorimotor defects and short- and long-term memory problems. Neuroprotective agents are used in an attempt to save ischemic neurons from necrosis and apoptosis, such as the antioxidant agent Eucalyptus. Numerous studies have demonstrated the involvement of the renin-angiotensin system in the initiation and progression of cardiovascular and neurodegenerative diseases. Candesartan is a drug that acts as an angiotensin II receptor 1 blocker. We established a rat model exhibiting sensorimotor and cognitive impairments due to chronic cerebral ischemia induced by the ligation of the right common carotid artery. Wistar male rats were randomly divided into five groups: Sham group, Untreated Ligated group, Ischemic group treated with Eucalyptus (500 mg/kg), Ischemic group treated with Candesartan (0.5 mg/kg), and Ischemic group treated with a combination of Eucalyptus and Candesartan. To evaluate the sensorimotor disorders, we performed the beam balance test, the beam walking test, and the modified sticky test. Moreover, the object recognition test and the Morris water maze test were performed to assess the memory disorders of the rats. The infarct rat brain regions were subsequently stained using the triphenyltetrazolium chloride staining technique. The rats in the Sham group had normal sensorimotor and cognitive functions without the appearance of microscopic ischemic brain lesions. In parallel, the untreated Ischemic group showed severe impaired neurological functions with the presence of considerable brain infarctions. The treatment of the Ischemic group with a combination of both Eucalyptus and Candesartan was more efficient in improving the sensorimotor and cognitive deficits (p < 0.001) than the treatment with Eucalyptus or Candesartan alone (p < 0.05), by the comparison to the non-treated Ischemic group. Our study shows that the combination of Eucalyptus and Candesartan could decrease ischemic brain injury and improve neurological outcomes.


Asunto(s)
Antihipertensivos/farmacología , Antioxidantes/farmacología , Bencimidazoles/farmacología , Compuestos de Bifenilo/farmacología , Isquemia Encefálica/tratamiento farmacológico , Eucalyptus/química , Fármacos Neuroprotectores/farmacología , Extractos Vegetales/farmacología , Tetrazoles/farmacología , Animales , Antihipertensivos/uso terapéutico , Antioxidantes/uso terapéutico , Bencimidazoles/uso terapéutico , Compuestos de Bifenilo/uso terapéutico , Peso Corporal/efectos de los fármacos , Isquemia Encefálica/patología , Isquemia Encefálica/fisiopatología , Arteria Carótida Común/efectos de los fármacos , Arteria Carótida Común/patología , Enfermedad Crónica , Interacciones Farmacológicas , Prueba del Laberinto Acuático de Morris/efectos de los fármacos , Fármacos Neuroprotectores/uso terapéutico , Ratas , Reconocimiento en Psicología/efectos de los fármacos , Tetrazoles/uso terapéutico
15.
Molecules ; 26(3)2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-33540754

RESUMEN

Lignans, phenolic plant secondary metabolites, are derived from the phenylpropanoid biosynthetic pathway. Although, being investigated for their health benefits in terms of antioxidant, antitumor, anti-inflammatory and antiviral properties, the role of these molecules in plants remains incompletely elucidated; a potential role in stress response mechanisms has been, however, proposed. In this study, a non-targeted metabolomic analysis of the roots, stems, and leaves of wild-type and PLR1-RNAi transgenic flax, devoid of (+) secoisolariciresinol diglucoside ((+) SDG)-the main flaxseed lignan, was performed using 1H-NMR and LC-MS, in order to obtain further insight into the involvement of lignan in the response of plant to osmotic stress. Results showed that wild-type and lignan-deficient flax plants have different metabolic responses after being exposed to osmotic stress conditions, but they both showed the capacity to induce an adaptive response to osmotic stress. These findings suggest the indirect involvement of lignans in osmotic stress response.


Asunto(s)
Cromatografía Liquida , Lino/metabolismo , Lignanos/metabolismo , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Metabolómica , Presión Osmótica , Lino/química , Fenotipo
16.
Antioxidants (Basel) ; 10(1)2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33430440

RESUMEN

The present study aims to investigate the properties of biopolymers extracted from a Lebanese onion non edible plant. The extraction was performed under mild conditions by varying the percentage of ultra-sound (US) treatment duration to a total extraction time of 30 min (0, 50, 100% US). The extracts were characterized using FTIR, SEC, GC-MS, TGA, and DSC analyses. The composition of the extracts was determined from the total carbohydrate content and protein content measurements. The thermal analyses indicate that all samples have high thermal stability. The antioxidant activities of the extracts were investigated, using ß-carotene bleaching, scavenging activity of ABTS, metal chelating ability, and total antioxidant activity tests. The results indicate that the 50% US treatment leads to the best antioxidant activity. Biocompatibility of the extracts was evaluated using hemolysis and cytotoxicity assays. The results showed that 0 and 50% US samples are not toxic to human cells, in contrary to 100% US.

17.
Plants (Basel) ; 9(12)2020 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-33302439

RESUMEN

Natural products, particularly those extracted from plants, have been used as therapy for different diseases for thousands of years. The first written records on the plants used in natural medicine, referred to as "medicinal plants", go back to about 2600 BC. A thorough and complete understanding of medicinal plants encompasses a multiplex of overlapping and integrated sciences such as botany, pharmacognosy, chemistry, enzymology and genetics. Psophocarpus tetragonolobus, a member of Fabaceae family also called winged bean, is a perennial herbaceous plant characterized by its tuberous roots and its winged pod twinning and a perennial legume rich in proteins, oils, vitamins and carbohydrates. Besides nutrients, winged bean also contains bioactive compounds that have therapeutic activities like anti-oxidant, anti-inflammatory, antinociceptive, antibacterial, antifungal, antiproliferative and cytotoxic activity, a few of which already been reported. This plant can also be used as a medicinal plant for future benefits. With this concept in mind, the present review is designed to shed the light on the interests in the various phytochemicals and pharmacological pharmacognostical aspects of Psophocarpus tetragonolobus.

18.
Medicines (Basel) ; 7(10)2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-33076394

RESUMEN

BACKGROUND: Lung cancer is one of the most prevalent cancers worldwide. Chemotherapy regimens, targeted against lung cancer, are considered an effective treatment; albeit with multiple fatal side effects. An alternative strategy, nowadays, is using natural products. Medicinal plants have been used, in combination with chemotherapy, to ameliorate side effects. AIMS: This study aims to investigate the antitumor effect of pomegranate juice (Punica granatum) on human lung adenocarcinoma basal epithelial cells (A549), to check the effect, when combined with low dose cisplatin (CDDP), at different doses. We also have evaluated the potential protective effect of pomegranate on normal peripheral blood mononuclear cells (PBMC). METHODS: Phytochemical screening of the extract was done using standard classical tests. Total phenolic and sugar contents were determined using the Folin-Ciocalteu and anthrone reagents, respectively. The antioxidant activity of pomegranate was estimated by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method. The viability of A549 cells and PBMC was evaluated using the neutral red assay. RESULTS: Our results demonstrated that Punica granatum or pomegranate juice (with different concentrations: 150, 300, 600 µg/mL) contained high levels of flavonoids, alkaloids, tanins, lignins, terpenoids, and phenols. The DPPH method showed that pomegranate juice had a strong antioxidant scavenging activity. Neutral red showed that combining pomegranate juice with low dose CDDP (8 µg/mL) decreased the cell viability of A549 cells, by 64%, compared to treatment with CDDP or pomegranate alone. When added to low dose CDDP, pomegranate increased the viability of normal PBMC cells by 46%. CONCLUSIONS: These results demonstrated that pomegranate could potentiate the anticancer effect of low dose CDDP on human lung adenocarcinoma cells (A549 cells) and could as well decrease its toxicity on PBMC.

19.
Toxicol Rep ; 7: 1025-1031, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32913715

RESUMEN

Widely used for a variety of applications, levels of dietary aluminum (Al) have seen a perpetual rise in Lebanon, leading to noticeable effects upon the human body. This study aims to estimate the rates of Al contaminated food consumption and quantify the Al present in different dietary matrices, revealing the major contributors to Al exposure for the Lebanese population. A cross-sectional study was conducted using a customized, self-reported Electronic Food Frequency Questionnaire (E-FFQ) using Curve®, targeting individuals between the ages of 18 and 64 from different Lebanese regions, distributed proportionally. The selection of food was based upon the results of the French EAT2 study. Al levels in food were analyzed using Flame Atomic Absorption Spectrometry (FAAS) after acid digestion. The E-FFQ was completed by 167 respondents. Data analysis was performed on SPSS version 25. Additionally, 97 food items were studied in 2018. Al levels had a mean of 3.56 ± 2.08 mg/kg (ranging from 0.14 to 9.37). The highest Al levels were found in vegetables, followed by sauces and condiments, candies, and ready meals. The Provisional Tolerable Weekly Intake (PTWI) of Al was set at 0.50 mg/kg body weight (60 Kg/person). Al mean Daily Dietary Exposure (DDE) was estimated to be 4341.18 µg/day, with the highest food exposure coming from lettuce, soft drinks, ice cream and tea. Al ingestion rates for the adult Lebanese population does not exceed the international established thresholds of tolerable intake (1 mg/kg/week). National recommendation should be developed to control the presence of metal for food safety purposes.

20.
Medicines (Basel) ; 7(8)2020 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-32707923

RESUMEN

Background: Lung and breast cancers are common in the world and represent major public health problems. Systemic chemotherapy is an effective way to prolong survival but it is associated with side effects. Plants are used as traditional treatments for many types of cancers, mostly in combination with chemotherapy. We investigated the antitumor effect of ethanolic (EE) and aqueous (AE) extracts of Eucalyptus camaldulensis on human alveolar adenocarcinoma basal epithelial cells (A549) and breast adenocarcinoma cell line (MCF-7) and checked the synergistic effect of the combination with low-dose cisplatin (CDDP). Methods: AE and EE were characterized for their secondary metabolites including content of phenol and antioxidant activity of both extracts. Cell viability was tested by the neutral red assay and MTT. Combinations of extract with low-dose CDDP on A549, MCF-7 cells, and normal cells peripheral blood mononuclear cells was used to study cell viability. Results: AE contains higher level of active constituents than EE. Higher antioxidant activity was observed in AE. Both extracts showed cytotoxic activity on A549 and MCF-7 cells. Moreover, combining E. camaldulensis with low-dose CDDP increases significantly the cell death of treated cells in comparison to those treated with CDDP alone. Conclusions: Our results highlight a new therapeutic concept that combines Eucalyptus camaldulensis with low-dose CDDP to treat lung and breast adenocarcinoma.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA