Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Immunol ; 212(6): 992-1001, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38305633

RESUMEN

Malaria, which results from infection with Plasmodium parasites, remains a major public health problem. Although humans do not develop long-lived, sterilizing immunity, protection against symptomatic disease develops after repeated exposure to Plasmodium parasites and correlates with the acquisition of humoral immunity. Despite the established role Abs play in protection from malaria disease, dysregulated inflammation is thought to contribute to the suboptimal immune response to Plasmodium infection. Plasmodium berghei ANKA (PbA) infection results in a fatal severe malaria disease in mice. We previously demonstrated that treatment of mice with IL-15 complex (IL-15C; IL-15 bound to an IL-15Rα-Fc fusion protein) induces IL-10 expression in NK cells, which protects mice from PbA-induced death. Using a novel MHC class II tetramer to identify PbA-specific CD4+ T cells, in this study we demonstrate that IL-15C treatment enhances T follicular helper (Tfh) differentiation and modulates cytokine production by CD4+ T cells. Moreover, genetic deletion of NK cell-derived IL-10 or IL-10R expression on T cells prevents IL-15C-induced Tfh differentiation. Additionally, IL-15C treatment results in increased anti-PbA IgG Ab levels and improves survival following reinfection. Overall, these data demonstrate that IL-15C treatment, via its induction of IL-10 from NK cells, modulates the dysregulated inflammation during Plasmodium infection to promote Tfh differentiation and Ab generation, correlating with improved survival from reinfection. These findings will facilitate improved control of malaria infection and protection from disease by informing therapeutic strategies and vaccine design.


Asunto(s)
Malaria , Plasmodium , Ratones , Humanos , Animales , Interleucina-10/metabolismo , Interleucina-15/metabolismo , Formación de Anticuerpos , Reinfección , Linfocitos T CD4-Positivos , Linfocitos T Colaboradores-Inductores , Inflamación/metabolismo , Ratones Endogámicos C57BL , Plasmodium berghei
2.
Nat Commun ; 12(1): 6377, 2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34737261

RESUMEN

Endocrine therapies for prostate cancer inhibit the androgen receptor (AR) transcription factor. In most cases, AR activity resumes during therapy and drives progression to castration-resistant prostate cancer (CRPC). However, therapy can also promote lineage plasticity and select for AR-independent phenotypes that are uniformly lethal. Here, we demonstrate the stem cell transcription factor Krüppel-like factor 5 (KLF5) is low or absent in prostate cancers prior to endocrine therapy, but induced in a subset of CRPC, including CRPC displaying lineage plasticity. KLF5 and AR physically interact on chromatin and drive opposing transcriptional programs, with KLF5 promoting cellular migration, anchorage-independent growth, and basal epithelial cell phenotypes. We identify ERBB2 as a point of transcriptional convergence displaying activation by KLF5 and repression by AR. ERBB2 inhibitors preferentially block KLF5-driven oncogenic phenotypes. These findings implicate KLF5 as an oncogene that can be upregulated in CRPC to oppose AR activities and promote lineage plasticity.


Asunto(s)
Factores de Transcripción de Tipo Kruppel/metabolismo , Células Neuroendocrinas/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Receptor ErbB-2/metabolismo , Receptores Androgénicos/metabolismo , Línea Celular Tumoral , Humanos , Masculino , Estadificación de Neoplasias , Células Neuroendocrinas/patología , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , Transducción de Señal , Activación Transcripcional
3.
PLoS One ; 11(12): e0167752, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28002470

RESUMEN

Global loss of honey bee colonies is threatening the human food supply. Diverse pathogens reduce honey bee hardiness needed to sustain colonies, especially in winter. We isolated a free-living Gram negative bacillus from hemolymph of worker honey bees (Apis mellifera) found separated from winter clusters. In some hives, greater than 90% of the dying bees detached from the winter cluster were found to contain this bacterium in their hemolymph. Throughout the year, the same organism was rarely found in bees engaged in normal hive activities, but was detected in about half of Varroa destructor mites obtained from colonies that housed the septic bees. Flow cytometry of hemolymph from septic bees showed a significant reduction of plasmatocytes and other types of hemocytes. Interpretation of the16S rRNA sequence of the bacterium indicated that it belongs to the Serratia genus of Gram-negative Gammaproteobacteria, which has not previously been implicated as a pathogen of adult honey bees. Complete genome sequence analysis of the bacterium supported its classification as a novel strain of Serratia marcescens, which was designated as S. marcescens strain sicaria (Ss1). When compared with other strains of S. marcescens, Ss1 demonstrated several phenotypic and genetic differences, including 65 genes not previously found in other Serratia genomes. Some of the unique genes we identified in Ss1 were related to those from bacterial insect pathogens and commensals. Recovery of this organism extends a complex pathosphere of agents which may contribute to failure of honey bee colonies.


Asunto(s)
Hemolinfa/microbiología , Sepsis/microbiología , Infecciones por Serratia/microbiología , Serratia marcescens/genética , Animales , Abejas , Genoma Bacteriano , Hemolinfa/citología , Hemolinfa/metabolismo , Fenotipo , Filogenia , ARN Ribosómico 16S/química , ARN Ribosómico 16S/metabolismo , Sepsis/veterinaria , Análisis de Secuencia de ADN , Infecciones por Serratia/veterinaria , Serratia marcescens/clasificación , Serratia marcescens/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...