Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Exp Med ; 220(12)2023 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-37725138

RESUMEN

The B cell regulator Pax5 consists of multiple domains whose function we analyzed in vivo by deletion in Pax5. While B lymphopoiesis was minimally affected in mice with homozygous deletion of the octapeptide or partial homeodomain, both sequences were required for optimal B cell development. Deletion of the C-terminal regulatory domain 1 (CRD1) interfered with B cell development, while elimination of CRD2 modestly affected B-lymphopoiesis. Deletion of CRD1 and CRD2 arrested B cell development at an uncommitted pro-B cell stage. Most Pax5-regulated genes required CRD1 or both CRD1 and CRD2 for their activation or repression as these domains induced or eliminated open chromatin at Pax5-activated or Pax5-repressed genes, respectively. Co-immunoprecipitation experiments demonstrated that the activating function of CRD1 is mediated through interaction with the chromatin-remodeling BAF, H3K4-methylating Set1A-COMPASS, and H4K16-acetylating NSL complexes, while its repressing function depends on recruitment of the Sin3-HDAC and MiDAC complexes. These data provide novel molecular insight into how different Pax5 domains regulate gene expression to promote B cell commitment and development.


Asunto(s)
Linfocitos B , Células Precursoras de Linfocitos B , Animales , Ratones , Homocigoto , Eliminación de Secuencia , Cromatina , Factor de Transcripción PAX5/genética
2.
EMBO J ; 42(15): e112741, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37337907

RESUMEN

While extended loop extrusion across the entire Igh locus controls VH -DJH recombination, local regulatory sequences, such as the PAIR elements, may also activate VH gene recombination in pro-B-cells. Here, we show that PAIR-associated VH 8 genes contain a conserved putative regulatory element (V8E) in their downstream sequences. To investigate the function of PAIR4 and its V8.7E, we deleted 890 kb containing all 14 PAIRs in the Igh 5' region, which reduced distal VH gene recombination over a 100-kb distance on either side of the deletion. Reconstitution by insertion of PAIR4-V8.7E strongly activated distal VH gene recombination. PAIR4 alone resulted in lower induction of recombination, indicating that PAIR4 and V8.7E function as one regulatory unit. The pro-B-cell-specific activity of PAIR4 depends on CTCF, as mutation of its CTCF-binding site led to sustained PAIR4 activity in pre-B and immature B-cells and to PAIR4 activation in T-cells. Notably, insertion of V8.8E was sufficient to activate VH gene recombination. Hence, enhancers of the PAIR4-V8.7E module and V8.8E element activate distal VH gene recombination and thus contribute to the diversification of the BCR repertoire in the context of loop extrusion.


Asunto(s)
Células Precursoras de Linfocitos B , Secuencias Reguladoras de Ácidos Nucleicos , Secuencias Reguladoras de Ácidos Nucleicos/genética , Sitios de Unión , Recombinación Genética
3.
Nat Commun ; 14(1): 2316, 2023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-37085514

RESUMEN

Extended loop extrusion across the immunoglobulin heavy-chain (Igh) locus facilitates VH-DJH recombination following downregulation of the cohesin-release factor Wapl by Pax5, resulting in global changes in the chromosomal architecture of pro-B cells. Here, we demonstrate that chromatin looping and VK-JK recombination at the Igk locus were insensitive to Wapl upregulation in pre-B cells. Notably, the Wapl protein was expressed at a 2.2-fold higher level in pre-B cells compared with pro-B cells, which resulted in a distinct chromosomal architecture with normal loop sizes in pre-B cells. High-resolution chromosomal contact analysis of the Igk locus identified multiple internal loops, which likely juxtapose VK and JK elements to facilitate VK-JK recombination. The higher Wapl expression in Igµ-transgenic pre-B cells prevented extended loop extrusion at the Igh locus, leading to recombination of only the 6 most 3' proximal VH genes and likely to allelic exclusion of all other VH genes in pre-B cells. These results suggest that pro-B and pre-B cells with their distinct chromosomal architectures use different chromatin folding principles for V gene recombination, thereby enabling allelic exclusion at the Igh locus, when the Igk locus is recombined.


Asunto(s)
Cadenas Pesadas de Inmunoglobulina , Células Precursoras de Linfocitos B , Recombinación V(D)J , Cromatina/genética , Cromatina/metabolismo , Cadenas Pesadas de Inmunoglobulina/genética , Inmunoglobulinas/genética , Inmunoglobulinas/metabolismo , Células Precursoras de Linfocitos B/metabolismo , Recombinación Genética , Recombinación V(D)J/genética
5.
J Exp Med ; 219(9)2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-35947077

RESUMEN

The genetic causes of primary antibody deficiencies and autism spectrum disorder (ASD) are largely unknown. Here, we report a patient with hypogammaglobulinemia and ASD who carries biallelic mutations in the transcription factor PAX5. A patient-specific Pax5 mutant mouse revealed an early B cell developmental block and impaired immune responses as the cause of hypogammaglobulinemia. Pax5 mutant mice displayed behavioral deficits in all ASD domains. The patient and the mouse model showed aberrant cerebellar foliation and severely impaired sensorimotor learning. PAX5 deficiency also caused profound hypoplasia of the substantia nigra and ventral tegmental area due to loss of GABAergic neurons, thus affecting two midbrain hubs, controlling motor function and reward processing, respectively. Heterozygous Pax5 mutant mice exhibited similar anatomic and behavioral abnormalities. Lineage tracing identified Pax5 as a crucial regulator of cerebellar morphogenesis and midbrain GABAergic neurogenesis. These findings reveal new roles of Pax5 in brain development and unravel the underlying mechanism of a novel immunological and neurodevelopmental syndrome.


Asunto(s)
Agammaglobulinemia , Trastorno del Espectro Autista , Animales , Trastorno del Espectro Autista/genética , Heterocigoto , Ratones , Mutación/genética , Factor de Transcripción PAX5/genética
6.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33446502

RESUMEN

Haematopoiesis relies on tightly controlled gene expression patterns as development proceeds through a series of progenitors. While the regulation of hematopoietic development has been well studied, the role of noncoding elements in this critical process is a developing field. In particular, the discovery of new regulators of lymphopoiesis could have important implications for our understanding of the adaptive immune system and disease. Here we elucidate how a noncoding element is capable of regulating a broadly expressed transcription factor, Ikaros, in a lymphoid lineage-specific manner, such that it imbues Ikaros with the ability to specify the lymphoid lineage over alternate fates. Deletion of the Daedalus locus, which is proximal to Ikaros, led to a severe reduction in early lymphoid progenitors, exerting control over the earliest fate decisions during lymphoid lineage commitment. Daedalus locus deletion led to alterations in Ikaros isoform expression and a significant reduction in Ikaros protein. The Daedalus locus may function through direct DNA interaction as Hi-C analysis demonstrated an interaction between the two loci. Finally, we identify an Ikaros-regulated erythroid-lymphoid checkpoint that is governed by Daedalus in a lymphoid-lineage-specific manner. Daedalus appears to act as a gatekeeper of Ikaros's broad lineage-specifying functions, selectively stabilizing Ikaros activity in the lymphoid lineage and permitting diversion to the erythroid fate in its absence. These findings represent a key illustration of how a transcription factor with broad lineage expression must work in concert with noncoding elements to orchestrate hematopoietic lineage commitment.


Asunto(s)
Hematopoyesis/genética , Factor de Transcripción Ikaros/genética , Linfopoyesis/genética , ARN no Traducido/genética , Animales , Diferenciación Celular/genética , Linaje de la Célula/genética , Proteínas de Unión al ADN/genética , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica/genética , Ratones
8.
Nature ; 584(7819): 142-147, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32612238

RESUMEN

Nuclear processes, such as V(D)J recombination, are orchestrated by the three-dimensional organization of chromosomes at multiple levels, including compartments1 and topologically associated domains (TADs)2,3 consisting of chromatin loops4. TADs are formed by chromatin-loop extrusion5-7, which depends on the loop-extrusion function of the ring-shaped cohesin complex8-12. Conversely, the cohesin-release factor Wapl13,14 restricts loop extension10,15. The generation of a diverse antibody repertoire, providing humoral immunity to pathogens, requires the participation of all V genes in V(D)J recombination16, which depends on contraction of the 2.8-Mb-long immunoglobulin heavy chain (Igh) locus by Pax517,18. However, how Pax5 controls Igh contraction in pro-B cells remains unknown. Here we demonstrate that locus contraction is caused by loop extrusion across the entire Igh locus. Notably, the expression of Wapl is repressed by Pax5 specifically in pro-B and pre-B cells, facilitating extended loop extrusion by increasing the residence time of cohesin on chromatin. Pax5 mediates the transcriptional repression of Wapl through a single Pax5-binding site by recruiting the polycomb repressive complex 2 to induce bivalent chromatin at the Wapl promoter. Reduced Wapl expression causes global alterations in the chromosome architecture, indicating that the potential to recombine all V genes entails structural changes of the entire genome in pro-B cells.


Asunto(s)
Genes de las Cadenas Pesadas de las Inmunoglobulinas/genética , Cadenas Pesadas de Inmunoglobulina/genética , Región Variable de Inmunoglobulina/genética , Factor de Transcripción PAX5/metabolismo , Proteínas/genética , Proteínas Represoras/metabolismo , Recombinación V(D)J/genética , Animales , Linfocitos B/citología , Linfocitos B/metabolismo , Sitios de Unión , Proteínas de Ciclo Celular/metabolismo , Ensamble y Desensamble de Cromatina , Proteínas Cromosómicas no Histona/metabolismo , Cadenas Pesadas de Inmunoglobulina/química , Región Variable de Inmunoglobulina/química , Ratones , Complejo Represivo Polycomb 2/metabolismo , Células Precursoras de Linfocitos B/citología , Células Precursoras de Linfocitos B/metabolismo , Regiones Promotoras Genéticas/genética , Cohesinas
9.
Adv Immunol ; 128: 93-121, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26477366

RESUMEN

Lymphocytes express a diverse repertoire of antigen receptors, which are able to recognize a large variety of foreign pathogens. Functional antigen receptor genes are assembled by V(D)J recombination in immature B cells (Igh and Igk) and T cells (Tcr b and Tcra/d). V(D)J recombination takes place in the 3' proximal domain containing the D, J, and C gene segments, whereas 31 (Tcrb) to 200 (Igh) V genes are spread over a large region of 0.67 (Tcrb) to 3 (Igk) megabase pairs. The spatial regulation of V(D)J recombination has been best studied for the Igh locus, which undergoes reversible contraction by long-range looping in pro-B cells. This large-scale contraction brings distantly located VH genes into close proximity of the DJH-rearranged gene segment, which facilitates VH-DJH recombination. The B-cell-specific Pax5, ubiquitous YY1, and architectural CTCF/cohesin proteins regulate Igh locus contraction in pro-B cells by binding to multiple sites in the VH gene cluster. These regulators also control the pro-B-cell-specific activity of the distally located PAIR elements, which may be involved in the regulation of VH-DJH recombination by promoting locus contraction. Moreover, the large VH gene cluster of the Igh locus undergoes flexible long-range looping, which guarantees similar participation of all VH genes in VH-DJH recombination to generate a diverse antibody repertoire. Importantly, long-range looping is a more general regulatory principle, as other antigen receptor loci also undergo reversible contraction at the developmental stage, where they engage in V-(D)J recombination.


Asunto(s)
Receptores de Antígenos/genética , Recombinación V(D)J , Inmunidad Adaptativa , Animales , Linfocitos B/citología , Linfocitos B/metabolismo , Humanos , Linfocitos T/citología , Linfocitos T/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...