Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Base de datos
Tipo de estudio
Intervalo de año de publicación
2.
Sci Rep ; 13(1): 9061, 2023 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-37271782

RESUMEN

The vaginal microbiota refers to the microorganisms that reside in the vagina. These microorganisms contribute significantly to a woman's reproductive and general health. A healthy vaginal microbiota is typically a low-diversity environment with a predominance of lactic acid-producing Lactobacillus species. Factors such as antibiotic use, sexual activity, and hormonal changes can disrupt the balance of the vaginal microbiota, leading to conditions such as bacterial vaginosis. The composition of the vaginal microbiota changes and takes on added importance during pregnancy, serving as a barrier against infection for both mother and fetus. Despite the importance of the microorganisms that colonize the vagina, details of how changes in composition and diversity can impact pregnancy outcomes is poorly understood. This is especially true for woman with a high prevalence of Gardnerella vaginalis. Here we report on a diverse cohort of 749 women, enrolled in the InSPIRe cohort, during their final trimester of pregnancy. We show that Lactobacilli, including L. crispatus are important in maintaining low diversity, and that depletion in this critical community is linked with preterm delivery. We further demonstrate that it is overall diversity of the vaginal microbiota, not specific species, which provides the best indicator of risk.


Asunto(s)
Microbiota , Vaginosis Bacteriana , Embarazo , Recién Nacido , Femenino , Humanos , Resultado del Embarazo , Vagina/microbiología , Vaginosis Bacteriana/microbiología , Gardnerella vaginalis , Lactobacillus
3.
PLoS Genet ; 17(12): e1009609, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34898607

RESUMEN

How and when potential becomes restricted in differentiating stem cell daughters is poorly understood. While it is thought that signals from the niche are actively required to prevent differentiation, another model proposes that stem cells can reversibly transit between multiple states, some of which are primed, but not committed, to differentiate. In the Drosophila testis, somatic cyst stem cells (CySCs) generate cyst cells, which encapsulate the germline to support its development. We find that CySCs are maintained independently of niche self-renewal signals if activity of the PI3K/Tor pathway is inhibited. Conversely, PI3K/Tor is not sufficient alone to drive differentiation, suggesting that it acts to license cells for differentiation. Indeed, we find that the germline is required for differentiation of CySCs in response to PI3K/Tor elevation, indicating that final commitment to differentiation involves several steps and intercellular communication. We propose that CySC daughter cells are plastic, that their fate depends on the availability of neighbouring germ cells, and that PI3K/Tor acts to induce a primed state for CySC daughters to enable coordinated differentiation with the germline.


Asunto(s)
Células Madre Adultas/citología , Proteínas de Drosophila/genética , Fosfatidilinositol 3-Quinasas/genética , Serina-Treonina Quinasas TOR/genética , Testículo/crecimiento & desarrollo , Animales , Diferenciación Celular/genética , Autorrenovación de las Células/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Células Germinativas/crecimiento & desarrollo , Masculino , Transducción de Señal/genética , Nicho de Células Madre/genética , Testículo/metabolismo
4.
Orphanet J Rare Dis ; 16(1): 288, 2021 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-34183044

RESUMEN

BACKGROUND: Epstein-Barr virus (EBV) targets B-cells where it establishes a latent infection. EBV can transform B-cells in vitro and is recognized as an oncogenic virus, especially in the setting of immune compromise. Indeed, immunodeficient patients may fail to control chronic EBV infection, leading to the development EBV-driven lymphoid malignancies. Ataxia telangiectasia (AT) is a primary immune deficiency caused by mutations in the ATM gene, involved in the repair of double-strand breaks. Patients with AT are at high risk of developing cancers, mostly B-cell lymphoid malignancies, most of which being EBV-related. Aside from immune deficiency secondary to AT, loss of ATM function could also hinder the control of the virus within B-cells, favoring lymphomagenesis in AT patients. RESULTS: We used RNA sequencing on lymphoblastoid cell lines derived from patients with AT and healthy donors to analyze and compare both cellular and viral gene expression. We found numerous deregulated signaling pathways involving transcription, translation, oncogenesis and immune regulation. Specifically, the translational defect was confirmed in vitro, suggesting that the pathogenesis of AT may also involve a ribosomal defect. Concomitant analysis of viral gene expression did not reveal significant differential gene expression, however, analysis of EBV interactome suggests that the viral latency genes EBNA-3A, EBNA-3C and LMP1 may be disrupted in LCL from AT patients. CONCLUSION: Our data support the notion that ATM deficiency deregulates cellular gene expression possibly disrupting interactions with EBV latent genes, promoting the oncogenic potential of the virus. These preliminary findings provide a new step towards the understanding of EBV regulation and of AT pathogenesis.


Asunto(s)
Ataxia Telangiectasia , Infecciones por Virus de Epstein-Barr , Ataxia Telangiectasia/genética , Línea Celular , Infecciones por Virus de Epstein-Barr/genética , Antígenos Nucleares del Virus de Epstein-Barr , Expresión Génica , Herpesvirus Humano 4/genética , Humanos , ARN , Análisis de Secuencia de ARN
5.
Sci Transl Med ; 11(512)2019 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-31578242

RESUMEN

Lassa fever is a major threat in Western Africa. The large number of people living at risk for this disease calls for the development of a vaccine against Lassa virus (LASV). We generated live-attenuated LASV vaccines based on measles virus and Mopeia virus platforms and expressing different LASV antigens, with the aim to develop a vaccine able to protect after a single shot. We compared the efficacy of these vaccines against LASV in cynomolgus monkeys. The vaccines were well tolerated and protected the animals from LASV infection and disease after a single immunization but with varying efficacy. Analysis of the immune responses showed that complete protection was associated with robust secondary T cell and antibody responses against LASV. Transcriptomic and proteomic analyses showed an early activation of innate immunity and T cell priming after immunization with the most effective vaccines, with changes detectable as early as 2 days after immunization. The most efficacious vaccine candidate, a measles vector simultaneously expressing LASV glycoprotein and nucleoprotein, has been selected for further clinical evaluation.


Asunto(s)
Glicoproteínas/inmunología , Nucleoproteínas/inmunología , Proteínas Virales/inmunología , Animales , Línea Celular , Citometría de Flujo , Humanos , Fiebre de Lassa/inmunología , Fiebre de Lassa/prevención & control , Fiebre de Lassa/virología , Virus Lassa , Macaca fascicularis , Masculino , Proteómica , Transcriptoma , Vacunación/métodos
6.
Science ; 365(6449): 176-180, 2019 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-31296770

RESUMEN

Elevated levels of type I interferon (IFN) during pregnancy are associated with intrauterine growth retardation, preterm birth, and fetal demise through mechanisms that are not well understood. A critical step of placental development is the fusion of trophoblast cells into a multinucleated syncytiotrophoblast (ST) layer. Fusion is mediated by syncytins, proteins deriving from ancestral endogenous retroviral envelopes. Using cultures of human trophoblasts or mouse cells, we show that IFN-induced transmembrane proteins (IFITMs), a family of restriction factors blocking the entry step of many viruses, impair ST formation and inhibit syncytin-mediated fusion. Moreover, the IFN inducer polyinosinic:polycytidylic acid promotes fetal resorption and placental abnormalities in wild-type but not in Ifitm-deleted mice. Thus, excessive levels of IFITMs may mediate the pregnancy complications observed during congenital infections and other IFN-induced pathologies.


Asunto(s)
Antígenos de Diferenciación/inmunología , Proteínas Reguladoras de la Apoptosis/inmunología , Fusión Celular , Muerte Fetal/etiología , Interferón Tipo I/inmunología , Péptidos y Proteínas de Señalización Intracelular/inmunología , Proteínas de Unión al ARN/inmunología , Trofoblastos/inmunología , Animales , Femenino , Reabsorción del Feto/inmunología , Productos del Gen env/inmunología , Humanos , Ratones , Poli I-C/farmacología , Embarazo , Proteínas Gestacionales/inmunología , Trofoblastos/efectos de los fármacos
7.
F1000Res ; 62017.
Artículo en Inglés | MEDLINE | ID: mdl-29333231

RESUMEN

Workbench and workflow systems such as Galaxy, Taverna, Chipster, or Common Workflow Language (CWL)-based frameworks, facilitate the access to bioinformatics tools in a user-friendly, scalable and reproducible way. Still, the integration of tools in such environments remains a cumbersome, time consuming and error-prone process. A major consequence is the incomplete or outdated description of tools that are often missing important information, including parameters and metadata such as publication or links to documentation. ToolDog (Tool DescriptiOn Generator) facilitates the integration of tools - which have been registered in the ELIXIR tools registry (https://bio.tools) - into workbench environments by generating tool description templates. ToolDog includes two modules. The first module analyses the source code of the bioinformatics software with language-specific plugins, and generates a skeleton for a Galaxy XML or CWL tool description. The second module is dedicated to the enrichment of the generated tool description, using metadata provided by bio.tools. This last module can also be used on its own to complete or correct existing tool descriptions with missing metadata.

8.
Development ; 143(21): 3914-3925, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27633989

RESUMEN

Stem cells reside in niches that provide signals to maintain self-renewal, and differentiation is viewed as a passive process that depends on loss of access to these signals. Here, we demonstrate that the differentiation of somatic cyst stem cells (CySCs) in the Drosophila testis is actively promoted by PI3K/Tor signaling, as CySCs lacking PI3K/Tor activity cannot differentiate properly. We find that an insulin peptide produced by somatic cells immediately outside of the stem cell niche acts locally to promote somatic differentiation through Insulin-like receptor (InR) activation. These results indicate that there is a local 'differentiation' niche that upregulates PI3K/Tor signaling in the early daughters of CySCs. Finally, we demonstrate that CySCs secrete the Dilp-binding protein ImpL2, the Drosophila homolog of IGFBP7, into the stem cell niche, which blocks InR activation in CySCs. Thus, we show that somatic cell differentiation is controlled by PI3K/Tor signaling downstream of InR and that the local production of positive and negative InR signals regulates the differentiation niche. These results support a model in which leaving the stem cell niche and initiating differentiation are actively induced by signaling.


Asunto(s)
Diferenciación Celular , Proteínas de Drosophila/fisiología , Fosfatidilinositol 3-Quinasas/fisiología , Nicho de Células Madre/fisiología , Células Madre/fisiología , Serina-Treonina Quinasas TOR/fisiología , Testículo/embriología , Animales , Animales Modificados Genéticamente , Diferenciación Celular/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Embrión no Mamífero , Masculino , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Transducción de Señal/genética , Células Madre/metabolismo , Testículo/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA