Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
JCI Insight ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38869957

RESUMEN

Glucocorticoid synthesis by adrenal glands (AG) is regulated by the hypothalamic-pituitary-adrenal axis (HPA-axis) to facilitate stress responses when the host is exposed to stimuli. Recent studies have implicated macrophages (MФ) as potential steroidogenic regulators, but the molecular mechanisms by which AG MФ exert such influence remain unclear. In this study, we investigated the role of AG MФ in response to cold challenge or atherosclerotic inflammation as physiologic models of acute or chronic stress. Utilizing single-cell RNA sequencing, we observed dynamic AG MФ polarization toward classical activation and lipid-associated phenotypes following acute or chronic stimulation. Among the transcriptional alterations induced in MФ, Triggering Receptor Expressed on Myeloid (Trem2) was highlighted due to its dramatic upregulation following stress. Conditional deletion of MФ Trem2 revealed a protective role for Trem2 in stress responses. Mechanistically, Trem2 deletion led to increased AG MФ death, abolished the TGFß-producing capacity of AG MФ, and resulted in enhanced glucocorticoid production. In addition, enhanced glucocorticoid production was replicated by blockade of TGFß signaling. Together, these observations suggest that AG MФ restrict steroidogenesis through Trem2 and TGFß, which opens potential avenues for immunotherapeutic interventions targeting the innate immune system to resolve stress-related disorders.

2.
Arterioscler Thromb Vasc Biol ; 44(7): 1646-1657, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38695172

RESUMEN

BACKGROUND: Trem2 (triggering receptor on myeloid cells 2), a surface lipid receptor, is expressed on foamy macrophages within atherosclerotic lesions and regulates cell survival, proliferation, and anti-inflammatory responses. Studies examining the role of Trem2 in atherosclerosis have shown that deletion of Trem2 leads to impaired foamy macrophage lipid uptake, proliferation, survival, and cholesterol efflux. Thus, we tested the hypothesis that administration of a Trem2 agonist antibody (AL002a) to atherogenic mice would enhance macrophage survival and decrease necrotic core formation to improve plaque stability. METHODS: To model a therapeutic intervention approach, atherosclerosis-prone mice (Ldlr [low-density lipoprotein receptor]-/-) were fed a high-fat diet for 8 weeks, then transitioned to treatment with AL002a or isotype control for an additional 8 weeks while continuing on a high-fat diet. RESULTS: AL002a-treated mice had increased lesion size in both the aortic root and whole mount aorta, which correlated with an expansion of plaque macrophage area. This expansion was due to increased macrophage survival and proliferation in plaques. Importantly, plaques from AL002a-treated mice showed improved features of plaque stability, including smaller necrotic cores, increased fibrous caps, and greater collagen deposition. Single-cell RNA sequencing of whole aorta suspensions from isotype- and AL002a-treated atherosclerotic mice revealed that Trem2 agonism dramatically altered foamy macrophage transcriptome. This included upregulation of oxidative phosphorylation and increased expression of collagen genes. In vitro studies validated that Trem2 agonism with AL002a promoted foamy macrophage oxidized low-density lipoprotein uptake, survival, and cholesterol efflux. CONCLUSIONS: Trem2 agonism expands atherosclerotic plaque macrophages by promoting cell survival and proliferation but improves features of plaque stability by rewiring foamy macrophage function to enhance cholesterol efflux and collagen deposition.


Asunto(s)
Aterosclerosis , Modelos Animales de Enfermedad , Células Espumosas , Glicoproteínas de Membrana , Ratones Endogámicos C57BL , Ratones Noqueados , Placa Aterosclerótica , Receptores Inmunológicos , Animales , Receptores Inmunológicos/agonistas , Receptores Inmunológicos/metabolismo , Receptores Inmunológicos/genética , Glicoproteínas de Membrana/agonistas , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Ratones , Aterosclerosis/patología , Aterosclerosis/metabolismo , Aterosclerosis/genética , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/prevención & control , Células Espumosas/metabolismo , Células Espumosas/patología , Células Espumosas/efectos de los fármacos , Masculino , Receptores de LDL/genética , Receptores de LDL/metabolismo , Receptores de LDL/deficiencia , Proliferación Celular/efectos de los fármacos , Dieta Alta en Grasa , Supervivencia Celular/efectos de los fármacos , Necrosis , Enfermedades de la Aorta/patología , Enfermedades de la Aorta/genética , Enfermedades de la Aorta/metabolismo , Enfermedades de la Aorta/prevención & control
3.
Nat Cardiovasc Res ; 2(11): 1015-1031, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38646596

RESUMEN

Atherosclerosis is driven by the expansion of cholesterol-loaded 'foamy' macrophages in the arterial intima. Factors regulating foamy macrophage differentiation and survival in plaque remain poorly understood. Here we show, using trajectory analysis of integrated single-cell RNA sequencing data and a genome-wide CRISPR screen, that triggering receptor expressed on myeloid cells 2 (Trem2) is associated with foamy macrophage specification. Loss of Trem2 led to a reduced ability of foamy macrophages to take up oxidized low-density lipoprotein (oxLDL). Myeloid-specific deletion of Trem2 showed an attenuation of plaque progression, even when targeted in established atherosclerotic lesions, and was independent of changes in circulating cytokines, monocyte recruitment or cholesterol levels. Mechanistically, we link Trem2-deficient macrophages with a failure to upregulate cholesterol efflux molecules, resulting in impaired proliferation and survival. Overall, we identify Trem2 as a regulator of foamy macrophage differentiation and atherosclerotic plaque growth and as a putative therapeutic target for atherosclerosis.

4.
Front Immunol ; 13: 1087010, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36713384

RESUMEN

Introduction: Previous studies suggest that monocytes are an important contributor to tuberculosis (TB)-specific immune signatures in blood. Methods: Here, we carried out comprehensive single-cell profiling of monocytes in paired blood samples of active TB (ATB) patients at diagnosis and mid-treatment, and healthy controls. Results: At diagnosis, ATB patients displayed increased monocyte-to-lymphocyte ratio, increased frequency of CD14+CD16- and intermediate CD14+CD16+ monocytes, and upregulation of interferon signaling genes that significantly overlapped with previously reported blood TB signatures in both CD14+ subsets. In this cohort, we identified additional transcriptomic and functional changes in intermediate CD14+CD16+ monocytes, such as the upregulation of inflammatory and MHC-II genes, and increased capacity to activate T cells, reflecting overall increased activation in this population. Single-cell transcriptomics revealed that distinct subsets of intermediate CD14+CD16+ monocytes were responsible for each gene signature, indicating significant functional heterogeneity within this population. Finally, we observed that changes in CD14+ monocytes were transient, as they were no longer observed in the same ATB patients mid-treatment, suggesting they are associated with disease resolution. Discussion: Together, our study demonstrates for the first time that both intermediate and classical monocytes individually contribute to blood immune signatures of ATB and identifies novel subsets and associated gene signatures that may hold disease relevance.


Asunto(s)
Monocitos , Tuberculosis , Humanos , Linfocitos , Perfilación de la Expresión Génica , Linfocitos T
5.
Nat Commun ; 12(1): 7016, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34853318

RESUMEN

Zinc is an essential cofactor for bacterial metabolism, and many Enterobacteriaceae express the zinc transporters ZnuABC and ZupT to acquire this metal in the host. However, the probiotic bacterium Escherichia coli Nissle 1917 (or "Nissle") exhibits appreciable growth in zinc-limited media even when these transporters are deleted. Here, we show that Nissle utilizes the siderophore yersiniabactin as a zincophore, enabling Nissle to grow in zinc-limited media, to tolerate calprotectin-mediated zinc sequestration, and to thrive in the inflamed gut. We also show that yersiniabactin's affinity for iron or zinc changes in a pH-dependent manner, with increased relative zinc binding as the pH increases. Thus, our results indicate that siderophore metal affinity can be influenced by the local environment and reveal a mechanism of zinc acquisition available to commensal and pathogenic Enterobacteriaceae.


Asunto(s)
Enterobacteriaceae/metabolismo , Sideróforos/metabolismo , Zinc/metabolismo , Transportadoras de Casetes de Unión a ATP , Animales , Proteínas Bacterianas/metabolismo , Proteínas Portadoras , Colon/microbiología , Colon/patología , Escherichia coli/metabolismo , Proteínas de Escherichia coli , Femenino , Complejo de Antígeno L1 de Leucocito , Proteínas de Transporte de Membrana , Ratones , Ratones Endogámicos C57BL , Fenoles , Salmonella typhi , Tiazoles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...