Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Ecol ; 32(8): 1875-1892, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36652544

RESUMEN

Species living in high mountain areas are currently threatened by climate change and human land use changes. High-elevation birds frequently inhabit island-like suitable patches around mountain peaks, and in such conditions the capability to exchange individuals among patches is crucial to maintain gene flow. However, we lack information regarding the dispersal ability of most of these species and the possible influence of landscape features on dispersal. In this study, we used population genomics and landscape resistance modelling to investigate dispersal in a high-elevation specialist migratory bird, the water pipit Anthus spinoletta. We aimed to assess the levels of gene flow in this species within a wide area of the European Alps, and to assess the effects of environmental characteristics on gene flow, by testing the isolation by distance (IBD) hypothesis against the isolation by resistance (IBR) hypothesis. We found clear support for IBR, indicating that water pipits preferentially disperse across suitable breeding habitat (i.e., high-elevation grassland). IBR was stronger in the part of the study area with less extended suitable habitat. Landscape resistance was slightly better described by habitat suitability models than landscape connectivity models. Despite the observed IBR, gene flow within the study area was high, probably also because of the still wide and relatively continuous breeding range. The forecasted reduction of range of this species may lead to stronger effects of IBR on gene flow. Other high-elevation specialist birds may show similar IBR patterns, but with possibly stronger effects on gene flow because of their more reduced and patchy habitats.


Asunto(s)
Passeriformes , Animales , Humanos , Ecosistema , Cambio Climático , Flujo Génico , Agua
2.
Oecologia ; 199(3): 499-512, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35192064

RESUMEN

Understanding the effects of landscape composition and configuration, climate, and topography on bird diversity is necessary to identify distribution drivers, potential impacts of land use changes, and future conservation strategies. We surveyed bird communities in a study area located in the Central Alps (Autonomous Province of South Tyrol, northeast Italy), by means of point counts and investigated taxonomic and functional diversity at two spatial scales along gradients of land use/land cover (LULC) intensity and elevation. We also explored how environmental variables influence bird traits and red-list categories. Models combining drivers of different types were highly supported, pointing towards synergetic effects of different types of environmental variables on bird communities. The model containing only LULC compositional variables was the most supported one among the single-group models: LULC composition plays a crucial role in shaping local biodiversity and hence bird communities, even across broad landscape gradients. Particularly relevant were wetlands, open habitats, agricultural mosaics made up of small habitat patches and settlements, ecotonal and structural elements in agricultural settings, and continuous forests. To conserve bird diversity in the Alps, planning and management practices promoting and maintaining small fields, structural elements, and a mosaic of different LULC types should be supported, while preserving continuous forests at the same time. Additionally, pastures, extensively used meadows, and wetlands are key to conservation. These strategies might mitigate the impacts of global change on bird diversity in the Alps and in other European mountain areas.


Asunto(s)
Biodiversidad , Aves , Agricultura , Animales , Conservación de los Recursos Naturales , Ecosistema , Región Alpina Europea , Bosques
3.
Sci Rep ; 10(1): 12516, 2020 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-32719437

RESUMEN

To understand how diversity is distributed in space is a fundamental aim for optimizing future species and community conservation. We examined in parallel species richness and beta diversity components of nine taxonomic groups along a finite space, represented by pastured grasslands along an elevational gradient. Beta diversity, which is assumed to bridge local alpha diversity to regional gamma diversity was partitioned into the two components turnover and nestedness and analyzed at two levels: from the lowest elevation to all other elevations, and between neighboring elevations. Species richness of vascular plants, butterflies, beetles, spiders and earthworms showed a hump-shaped relationship with increasing elevation, while it decreased linearly for grasshoppers and ants, but increased for lichens and bryophytes. For most of the groups, turnover increased with increasing elevational distance along the gradient while nestedness decreased. With regard to step-wise beta diversity, rates of turnover or nestedness did not change notably between neighboring steps for the majority of groups. Our results support the assumption that species communities occupying the same habitat significantly change along elevation, however transition seems to happen continuously and is not detectable between neighboring steps. Our findings, rather than delineating levels of major diversity losses, indicate that conservation actions targeting at a preventive protection for species and their environment in mountainous regions require the consideration of entire spatial settings.

4.
Nat Commun ; 11(1): 1968, 2020 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-32327640

RESUMEN

The European steppes and their biota have been hypothesized to be either young remnants of the Pleistocene steppe belt or, alternatively, to represent relicts of long-term persisting populations; both scenarios directly bear on nature conservation priorities. Here, we evaluate the conservation value of threatened disjunct steppic grassland habitats in Europe in the context of the Eurasian steppe biome. We use genomic data and ecological niche modelling to assess pre-defined, biome-specific criteria for three plant and three arthropod species. We show that the evolutionary history of Eurasian steppe biota is strikingly congruent across species. The biota of European steppe outposts were long-term isolated from the Asian steppes, and European steppes emerged as disproportionally conservation relevant, harbouring regionally endemic genetic lineages, large genetic diversity, and a mosaic of stable refugia. We emphasize that conserving what is left of Europe's steppes is crucial for conserving the biological diversity of the entire Eurasian steppe biome.


Asunto(s)
Conservación de los Recursos Naturales , Especiación Genética , Pradera , Animales , Artrópodos/clasificación , Artrópodos/genética , Evolución Biológica , Biota/genética , ADN Mitocondrial/genética , Europa (Continente) , Genoma/genética , Modelos Teóricos , Filogenia , Filogeografía , Plantas/clasificación , Plantas/genética , Refugio de Fauna
5.
BMC Vet Res ; 12(1): 103, 2016 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-27296392

RESUMEN

BACKGROUND: Evaluating beneficial effects of potential protective therapies following cardiac arrest in rodent models could be enhanced by exploring behavior and cognitive functions. The Morris Water Maze is a well-known cognitive paradigm to test spatial learning and memory. RESULTS: Behavioral testing with the Morris Water Maze in Sprague-Dawley rats (300 ± 25 g) resuscitated after 8 min of ventricular fibrillation cardiac arrest was carried out 5 and 12 weeks after cardiac arrest (CA) and compared to results of naïve rats (CONTROL). At 5 weeks, within each group latency time to reach the hidden platform (reflecting spatial learning) decreased equally from day 1 to 4 (CA: 105.6 ± 8.2 vs. 8.9 ± 1.2 s, p < 0.001; CONTROL: 75.5 ± 13.2 vs. 17.1 ± 4.5, p < 0.001) with no differences between groups (p = 0.138). In the probe trial 24 h after the last trial, time spent in the target sector (reflecting memory recall) within each group was significantly longer (CA: 25 ± 1.3; CONTROL: 24.7 ± 2.5 s) than in each of the three other sectors (CA: 7.7 ± 0.7, 14.3 ± 2.5, 8.4 ± 0.8 and CONTROL: 7.8 ± 1.2, 11.7 ± 1.5, 10.3 ± 1.6 s) but with no significantly differences between groups. Seven days later (reflecting memory retention), control group animals remained significantly longer in the target sector compared to every other sector, whereas the cardiac arrest group animals did not. Even 12 weeks after cardiac arrest, the single p values showed that the control animals displayed a trend to perform better than the resuscitated animals. CONCLUSIONS: Memory recall was impaired early after 8 min of ventricular fibrillation cardiac arrest and might be a more valuable tool for cognitive testing than learning recall after global ischemia due to cardiac arrest.


Asunto(s)
Paro Cardíaco/complicaciones , Memoria a Largo Plazo , Fibrilación Ventricular , Animales , Reanimación Cardiopulmonar , Masculino , Aprendizaje por Laberinto , Proyectos Piloto , Ratas , Ratas Sprague-Dawley
6.
Mol Phylogenet Evol ; 77: 195-215, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24784974

RESUMEN

The Centaurea group is part of the Circum-Mediterranean Clade (CMC) of genus Centaurea subgenus Centaurea, a mainly Mediterranean plant group with more than 200 described species. The group is traditionally split on morphological basis into three sections: Centaurea, Phalolepis and Willkommia. This division, however, is doubtful, especially in light of molecular approaches. In this study we try to resolve this phylogenetic problem and to consolidate the circumscription and delimitation of the entire group against other closely related groups. We analyzed nuclear (internal transcribed spacer of the ribosomal genes) and chloroplast (rpl32-trnL intergenic spacer) DNA regions for most of the described species of the Centaurea group using phylogenetic and network approaches, and we checked the data for recombination. Phylogeny was used to reconstruct the evolution of the lacerate-membranaceous bract appendages using parsimony. The magnitude of incomplete lineage sorting was tested estimating the effective population sizes. Molecular dating was performed using a Bayesian approach, and the ancestral area reconstruction was conducted using the Dispersal-Extinction-Cladogenesis method. Monophyly of the Centaurea group is confirmed if a few species are removed. Our results do not support the traditional sectional division. There is a high incongruence between the two markers and between genetic data and morphology. However, there is a clear relation between geography and the structure of the molecular data. Diversification in the Centaurea group mainly took place during the Pliocene and Pleistocene. The ancestral area infered for the Circum-Mediterranean Clade of Centaurea is the Eastern Mediterranean, whereas for the Centaurea group it is most likely NW-Africa. The large incongruencies, which hamper phylogenetic reconstruction, are probably the result of introgression, even though the presence of incomplete lineage sorting as an additional factor cannot be ruled out. Convergent evolution of morphological traits may have led to incongruence between morphology-based, traditional systematics and molecular results. Our results also cast major doubts about current species delimitation.


Asunto(s)
Centaurea/genética , Filogenia , África , Teorema de Bayes , Centaurea/anatomía & histología , ADN de Plantas/genética , Especiación Genética , Filogeografía , Recombinación Genética , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...