Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Microorganisms ; 12(2)2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38399725

RESUMEN

During the SARS-CoV-2 pandemic, the Dr. Risch medical group employed the multiplex TaqPathTM COVID-19 CE-IVD RT-PCR Kit for large-scale routine diagnostic testing in Switzerland and the principality of Liechtenstein. The TaqPath Kit is a widely used multiplex assay targeting three genes (i.e., ORF1AB, N, S). With emergence of the B.1.1.7 (Alpha) variant, a diagnostic flaw became apparent as the amplification of the S-gene target was absent in these samples due to a deletion (ΔH69/V70) in the Alpha variant genome. This S-gene target failure (SGTF) was the earliest indication of a new variant emerging and was also observed in subsequent variants such as Omicron BA.1 and BA4/BA.5. The Delta variant and Omicron BA.2 did not present with SGTF. From September 2020 to November 2022, we investigated the applicability of the SGTF as a surrogate marker for emerging variants such as B.1.1.7, B.1.617.2 (Delta), and Omicron BA.1, BA.2, and BA.4/BA.5 in samples with cycle threshold (Ct) values < 30. Next to true SGTF-positive and SGTF-negative samples, there were also samples presenting with delayed-type S-gene amplification (higher Ct value for S-gene than ORF1ab gene). Among these, a difference of 3.8 Ct values between the S- and ORF1ab genes was found to best distinguish between "true" SGTF and the cycle threshold variability of the assay. Samples above the cutoff were subsequently termed partial SGTF (pSGTF). Variant confirmation was performed by whole-genome sequencing (Oxford Nanopore Technology, Oxford, UK) or mutation-specific PCR (TIB MOLBIOL). In total, 17,724 (7.4%) samples among 240,896 positives were variant-confirmed, resulting in an overall sensitivity and specificity of 93.2% [92.7%, 93.7%] and 99.3% [99.2%, 99.5%], respectively. Sensitivity was increased to 98.2% [97.9% to 98.4%] and specificity lowered to 98.9% [98.6% to 99.1%] when samples with pSGTF were included. Furthermore, weekly logistic growth rates (α) and sigmoid's midpoint (t0) were calculated based on SGTF data and did not significantly differ from calculations based on comprehensive data from GISAID. The SGTF therefore allowed for a valid real-time estimate for the introduction of all dominant variants in Switzerland and Liechtenstein.

2.
Pathogens ; 12(12)2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38133268

RESUMEN

At the end of 2021, we observed an increase in N-gene target failures (NGTF) with the TaqPathTM COVID-19 CE-IVD RT-PCR Kit from Thermo Fisher Scientific (TaqPath). We subsequently used whole-genome sequencing (Oxford Nanopore Technology) to identify potential issues with N-gene PCR efficacy. Among 168,101 positive samples with a cycle threshold (CT) value <30 from August 2021 to May 2022, 194 specimens without N-gene amplification by PCR were identified (0.12%). Most NGTF samples originated from a wave of infection attributable to the Delta variant (B.1.617.2) and its sublineages. Sequencing revealed the nucleotide substitution G28922T (A217S) in 151 samples (88.8%). The substitution G215C, a hallmark mutation for Delta lineages, was concurrently present in all of these samples. Ten samples (5.9%) carried the deletion 28,913-28,918 (del214/215), eight samples (4.7%) the deletion 28,913-28,915 (del214) and one sample (0.6%) the deletion 28,892-28,930 (del207-219). Samples showing intact N-gene amplification by PCR lacked these specific mutations, but delayed-type amplification (i.e., partial or pNGTF) was attributable to the exclusive presence of A217S. As the N gene is a common target in many RT-PCR methods for SARS-CoV-2, an in-depth analysis of single-target failures using a combination with viral whole genome sequencing may allow for the identification of diagnostic flaws and eventual new variants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...