Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Pathogens ; 13(4)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38668292

RESUMEN

Wild birds are common hosts to numerous intracellular parasites such as single-celled eukaryotes of the family Eimeriidae (order Eucoccidiorida, phylum Apicomplexa). We investigated the infection rates, phylogeny, and pathogenicity of Isospora and Lankesterella parasites in wild and captive passerine birds. Blood and tissue samples of 815 wild and 15 deceased captive birds from Europe were tested using polymerase chain reaction and partial sequencing of the mitochondrial cytochrome b and cytochrome c oxidase I and the nuclear 18S rRNA gene. The infection rate for Lankesterella in wild birds was 10.7% compared to 5.8% for Isospora. Chromogenic in situ hybridization with probes targeting the parasites' 18S rRNA was employed to identify the parasites' presence in multiple organs, and hematoxylin-eosin staining was performed to visualize the parasite stages and assess associated lesions. Isospora parasites were mainly identified in the intestine, spleen, and liver. Extraintestinal tissue stages of Isospora were accompanied by predominantly lymphohistiocytic inflammation of varying severity. Lankesterella was most frequently detected in the spleen, lung, and brain; however, infected birds presented only a low parasite burden without associated pathological changes. These findings contribute to our understanding of Isospora and Lankesterella parasites in wild birds.

2.
Malar J ; 23(1): 70, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459560

RESUMEN

BACKGROUND: Birds chronically infected with avian malaria parasites often show relapses of parasitaemia after latent stages marked by absence of parasites in the peripheral circulation. These relapses are assumed to result from the activation of dormant exo-erythrocytic stages produced during secondary (post-erythrocytic) merogony of avian Plasmodium spp. Yet, there is no morphological proof of persistent or dormant tissue stages in the avian host during latent infections. This study investigated persistence of Plasmodium relictum pSGS1 in birds with latent infections during winter, with the goal to detect presumed persisting tissue stages using a highly sensitive RNAscope® in situ hybridization technology. METHODS: Fourteen domestic canaries were infected with P. relictum pSGS1 by blood-inoculation in spring, and blood films examined during the first 4 months post infection, and during winter and spring of the following year. After parasitaemia was no longer detectable, half of the birds were dissected, and tissue samples investigated for persisting tissue stages using RNAscope ISH and histology. The remaining birds were blood-checked and dissected after re-appearance of parasitaemia, and their tissues equally examined. RESULTS: Systematic examination of tissues showed no exo-erythrocytic stages in birds exhibiting latent infections by blood-film microscopy, indicating absence of dormant tissue stages in P. relictum pSGS1-infected canaries. Instead, RNAscope ISH revealed rare P. relictum blood stages in capillaries of various tissues and organs, demonstrating persistence of the parasites in the microvasculature. Birds examined after re-appearance of parasitemia showed higher numbers of P. relictum blood stages in both capillaries and larger blood vessels, indicating replication during early spring and re-appearance in the peripheral circulation. CONCLUSIONS: The findings suggest that persistence of P. relictum pSGS1 during latent infection is mediated by continuous low-level erythrocytic merogony and possibly tissue sequestration of infected blood cells. Re-appearance of parasitaemia in spring seems to result from increased erythrocytic merogony, therefore representing recrudescence and not relapse in blood-inoculated canaries. Further, the study highlights strengths and limitations of the RNAscope ISH technology for the detection of rare parasite stages in tissues, providing directions for future research on persistence and tissue sequestration of avian malaria and related haemosporidian parasites.


Asunto(s)
Infección Latente , Malaria Aviar , Plasmodium , Animales , Canarios/parasitología , Malaria Aviar/parasitología , Plasmodium/genética , Aves , Hibridación in Situ , Parasitemia/parasitología , Recurrencia
3.
Int J Parasitol Parasites Wildl ; 23: 100905, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38292244

RESUMEN

Neglected avian blood parasites of the genus Haemoproteus (Haemoproteidae) have recently attracted attention due to the application of molecular diagnostic tools, which unravelled remarkable diversity of their exo-erythrocytic (or tissue) stages both regarding morphology and organ tropism levels. The development of haemoproteids might result in pathologies of internal organs, however the exo-erythrocytic development (EED) of most Haemoproteus species remains unknown. Seven individual birds - Curruca communis (1) and Phylloscopus trochilus (6) - with high gametocytaemia (between 1% and 24%) of Haemoproteus angustus n. sp. (hCWT7) and Haemoproteus palloris (lineage hWW1) were sampled in Lithuania, and their internal organs were examined extensively by parallel application of histology and chromogenic in situ hybridization methods. Tissue stages were apparently absent, suggesting that the parasitaemia was not accompanied by detectable tissue merogony. Haemoproteus angustus n. sp. was described and characterized morphologically and molecularly. Sexual process and ookinete development of the new species readily occurred in vitro, and a unique character for Haemoproteus parasites was discovered - the obligatory development of several tiny residual bodies, which were associated with intracellular transformation of both macrogametocytes and microgametocytes before their escape from the host cells and formation of gametes. A DNA haplotype network was constructed with lineages that cluster in one clade with the lineage hCWT7. This clade consists of lineages mostly found in Curruca birds, indicating specificity for birds of this genus. The lineage hCWT7 is mainly a parasite of C. communis. Most reports of this lineage came from Turkey, with only a few records in Europe, mostly in birds wintering in Africa where transmission probably occurs. This study highlights unexpected difficulties in the research of EED even when using sensitive molecular diagnostic tools and extends information about transformation in early stages of gametogenesis in haemosporidian parasites.

4.
Int J Parasitol ; 54(1): 1-22, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37598774

RESUMEN

Avian haemosporidians of the genera Plasmodium, Haemoproteus, and Leucocytozoon are common blood parasites in wild birds all over the world. Despite their importance as pathogens potentially compromising host fitness and health, little is known about the exo-erythrocytic development of these parasites, particularly during co-infections which predominate in wildlife. This study aimed to address this issue using Haemoproteus parasites of Fringilla coelebs, a common bird species of the Western Palearctic and host to a variety of haemosporidian parasite lineages. Blood and tissue samples of 20 F. coelebs, positive for haemosporidians by blood film microscopy, were analysed by PCR and sequencing to determine cytochrome b lineages of the parasites. Tissue sections were examined for exo-erythrocytic stages by histology and in situ hybridization applying genus-, species-, and lineage-specific probes which target the 18S rRNA of the parasites. In addition, laser microdissection of tissue stages was performed to identify parasite lineages. Combined molecular results of PCR, laser microdissection, and in situ hybridization showed a high rate of co-infections, with Haemoproteus lineages dominating. Exo-erythrocytic meronts of five Haemoproteus spp. were described for the first known time, including Haemoproteus magnus hCCF6, Haemoproteus fringillae hCCF3, Haemoproteus majoris hCCF5, Haemoproteus sp. hROFI1, and Haemoproteus sp. hCCF2. Merogonic stages were observed in the vascular system, presenting a formerly unknown mode of exo-erythrocytic development in Haemoproteus parasites. Meronts and megalomeronts of these species were distinct regarding their morphology and organ distribution, indicating species-specific patterns of merogony and different host tissue tropism. New pathological aspects of haemoproteosis were reported. Furthermore, phylogenetic analysis of Haemoproteus spp. with regard to their exo-erythrocytic stages points towards separation of non-megalomeront-forming species from megalomeront-forming species, calling for further studies on exo-erythrocytic development of haemosporidian parasites to explore the phylogenetic character of this trait.


Asunto(s)
Enfermedades de las Aves , Coinfección , Haemosporida , Passeriformes , Infecciones Protozoarias en Animales , Animales , Filogenia , Coinfección/veterinaria , Tropismo al Anfitrión , Enfermedades de las Aves/parasitología , Infecciones Protozoarias en Animales/parasitología , Animales Salvajes
5.
Int J Parasitol Parasites Wildl ; 22: 60-68, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37692054

RESUMEN

Leucocytozoon parasites (Haemosporida, Leucocytozoidae) are haemosporidians whose diversity, exo-erythrocytic development and potential vectors are the least studied. The knowledge about their exo-erythrocytic development and pathogenicity is fragmentary, resulting in an incomplete comprehension of the impact of these parasites on avian hosts. For a long time, Leucocytozoon infections were considered benign to wild birds, even though they were virulent in poultry and responsible for some wild bird population declines. This study aimed to investigate the presence of Leucocytozoon species exo-erythrocytic stages in song thrushes Turdus philomelos using conventional histological techniques (sections stained by H&E) and chromogenic in situ hybridization (CISH). Tissues from ten birds (seven naturally infected and three opportunistic samplings) were examined using both methods. Parasite lineages were identified from blood samples using PCR-based techniques. Leucocytozoon species meronts were found in five individuals (in four birds using H&E staining protocol, and in three in CISH-treated histological sections). Meronts were found mainly in the kidneys, but some meronts were also present in the lungs. It was possible to observe different maturation stages of meronts in the same bird individual, indicating an asynchronous development. Cytomeres were readily visible in developing meronts. One megalomeront-like structure was present close to a blood vessel in the heart. It was covered with a prominent capsular-like wall. No inflammatory reaction or necrosis was seen in the tissues surrounding the meronts or the megalomeront-like structure. We could confirm the transmission of three Leucocytozoon lineages (lTUPHI14, lSTUR1 and lTUPHI13) in Europe, and add evidence of the transmission of two Plasmodium lineages, including Plasmodium circumflexum (pTURDUS1), and Haemoproteus asymmetricus (hTUPHI01). We call for further research to better understand Leucocytozoon parasite exo-erythrocytic development.

6.
Malar J ; 22(1): 232, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37563610

RESUMEN

BACKGROUND: The nuclear ribosomal RNA genes of Plasmodium parasites are assumed to evolve according to a birth-and-death model with new variants originating by duplication and others becoming deleted. For some Plasmodium species, it has been shown that distinct variants of the 18S rRNA genes are expressed differentially in vertebrate hosts and mosquito vectors. The central aim was to evaluate whether avian haemosporidian parasites of the genus Haemoproteus also have substantially distinct 18S variants, focusing on lineages belonging to the Haemoproteus majoris and Haemoproteus belopolskyi species groups. METHODS: The almost complete 18S rRNA genes of 19 Haemoproteus lineages of the subgenus Parahaemoproteus, which are common in passeriform birds from the Palaearctic, were sequenced. The PCR products of 20 blood and tissue samples containing 19 parasite lineages were subjected to molecular cloning, and ten clones in mean were sequenced each. The sequence features were analysed and phylogenetic trees were calculated, including sequence data published previously from eight additional Parahaemoproteus lineages. The geographic and host distribution of all 27 lineages was visualised as CytB haplotype networks and pie charts. Based on the 18S sequence data, species-specific oligonucleotide probes were designed to target the parasites in host tissue by in situ hybridization assays. RESULTS: Most Haemoproteus lineages had two or more variants of the 18S gene like many Plasmodium species, but the maximum distances between variants were generally lower. Moreover, unlike in most mammalian and avian Plasmodium species, the 18S sequences of all but one parasite lineage clustered into reciprocally monophyletic clades. Considerably distinct 18S clusters were only found in Haemoproteus tartakovskyi hSISKIN1 and Haemoproteus sp. hROFI1. The presence of chimeric 18S variants in some Haemoproteus lineages indicates that their ribosomal units rather evolve in a semi-concerted fashion than according to a strict model of birth-and-death evolution. CONCLUSIONS: Parasites of the subgenus Parahaemoproteus contain distinct 18S variants, but the intraspecific variability is lower than in most mammalian and avian Plasmodium species. The new 18S data provides a basis for more thorough investigations on the development of Haemoproteus parasites in host tissue using in situ hybridization techniques targeting specific parasite lineages.


Asunto(s)
Apicomplexa , Enfermedades de las Aves , Haemosporida , Parásitos , Plasmodium , Infecciones Protozoarias en Animales , Pájaros Cantores , Animales , Filogenia , ARN Ribosómico 18S/genética , Genes de ARNr , Enfermedades de las Aves/parasitología , Apicomplexa/genética , Plasmodium/genética , Mamíferos/genética , Infecciones Protozoarias en Animales/parasitología
7.
Pathogens ; 12(7)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37513745

RESUMEN

Haemoproteus parasites (Apicomplexa, Haemosporida) are widespread pathogens of birds, with a rich genetic (about 1900 lineages) and morphospecies (178 species) diversity. Nonetheless, their life cycles are poorly understood. The exo-erythrocytic stages of three Haemoproteus majoris (widespread generalist parasite) lineages have been previously reported, each in a different bird species. We aimed to further study and compare the development of five H. majoris lineages-hCCF5, hCWT4, hPARUS1, hPHSIB1, and hWW2-in a wider selection of natural avian hosts. A total of 42 individuals belonging to 14 bird species were sampled. Morphospecies and parasitemia were determined by microscopy of blood films, lineages by DNA-barcoding a 478 bp section of the cytochrome b gene, and exo-erythrocytic stages by histology and chromogenic in situ hybridization. The lineage hCWT4 was morphologically characterized as H. majoris for the first time. All lineage infections exclusively featured megalomeronts. The exo-erythrocytic stages found in all examined bird species were similar, particularly for the lineages hCCF5, hPARUS1, and hPHSIB1. Megalomeronts of the lineages hWW2 and hCWT4 were more similar to each other than to the former three lineages. The kidneys and gizzard were most often affected, followed by lungs and intestines; the site of development showed variation depending on the lineage.

8.
Int J Parasitol ; 53(10): 531-543, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37263375

RESUMEN

Avian haemosporidians are widespread parasites categorized into four families of the order Haemosporida (Apicomplexa). Species of the subgenus Parahaemoproteus (genus Haemoproteus) belong to the Haemoproteidae and are transmitted by Culicoides biting midges. Reports of death due to tissue damage during haemoproteosis in non-adapted birds have raised concerns about these pathogens, especially as their exo-erythrocytic development is known for only a few Haemoproteus spp. More research is needed to better understand the patterns of the parasites' development in tissues and their impact on avian hosts. Yellowhammers Emberiza citrinella (Emberizidae) and common house martins Delichon urbicum (Hirundinidae) were screened for Haemoproteus parasites by microscopic examination of blood films and PCR-based testing. Individuals with single infection were selected for histological investigations. H & E-stained sections were screened for detection and characterization of the exo-erythrocytic stages, while chromogenic in situ hybridization (CISH) and phylogenetic analysis were performed to confirm the Haemoproteus origin and their phylogenetic relationships. Haemoproteus dumbbellus n. sp. was discovered in Emberiza citrinella single-infected with the lineage hEMCIR01. Meronts of H. dumbbellus n. sp. developed in various organs of five of six tested individuals, a pattern which was reported in other Haemoproteus species clustering in the same clade, suggesting this could be a phylogenetic trait. By contrast, in Delichon urbicum infected with the Haemoproteus lineage hDELURB2, which was linked to the more distantly related parasite Haemoproteus hirundinis, only megalomeronts were found in the pectoral muscles of two of six infected individuals. All exo-erythrocytic stages were confirmed to be Haemoproteus parasites by CISH using a Haemoproteus genus-specific probe. While the development of meronts seems to be typical for species of the clade containing H. dumbbellus, further investigations and data from more species are needed to explore whether a phylogenetic pattern occurs in meront or megalomeront formation.


Asunto(s)
Enfermedades de las Aves , Ceratopogonidae , Haemosporida , Parásitos , Passeriformes , Infecciones Protozoarias en Animales , Humanos , Animales , Filogenia , Enfermedades de las Aves/epidemiología , Enfermedades de las Aves/parasitología , Infecciones Protozoarias en Animales/epidemiología , Infecciones Protozoarias en Animales/parasitología , Passeriformes/parasitología , Ceratopogonidae/parasitología , Citocromos b/genética
9.
Animals (Basel) ; 12(17)2022 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-36077935

RESUMEN

Avian haemosporidian parasites (Haemosporida, Apicomplexa) are globally distributed and infect birds of many orders. These pathogens have been much investigated in domestic and wild passeriform birds, in which they are relatively easy to access. In birds belonging to other orders, including owls (order Strigiformes), these parasites have been studied fragmentarily. Particularly little is known about the exo-erythrocytic development of avian haemosporidians. The goal of this study was to gain new knowledge about the parasites infecting owls in Europe and investigate their exo-erythrocytic stages. Tissue samples of 121 deceased owls were collected in Austria and Lithuania, and examined using polymerase chain reactions (PCR), histology, and chromogenic in situ hybridization (CISH). PCR-based diagnostics showed a total prevalence of 73.6%, revealing two previously unreported Haemoproteus and five novel Leucocytozoon lineages. By CISH and histology, meronts of several Leucocytozoon lineages (lASOT06, lSTAL5, lSTAL7) were discovered in the brains, heart muscles, and kidneys of infected birds. Further, megalomeronts of Haemoproteus syrnii (lineage hSTAL2) were discovered. This study contributes new knowledge to a better understanding of the biodiversity of avian haemosporidian parasites infecting owls in Europe, provides information on tissue stages of the parasites, and calls for further research of these under-investigated pathogens relevant to bird health.

10.
Int J Parasitol Parasites Wildl ; 19: 26-37, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36035627

RESUMEN

In 2017, a mortality event affected Humboldt penguins at Chester Zoo (UK), which coincided with the diagnosis of avian malaria (AM) in some birds. AM is found worldwide wherever a competent mosquito vector is present, but the disease is particularly severe in penguins and other species that originate from non-endemic regions. To better understand the role of AM and manage its threat to penguin collections, Plasmodium was surveyed through PCR at Chester Zoo in mosquitoes, penguins, and dead free-living wild birds during and around the mortality event. Additional sequences were obtained from penguin fatalities from four other UK zoological collections. All sequences were integrated into phylogenetic analyses to determine parasite species and lineages. In total, 753/6459 positive mosquitoes were recorded (11.7% prevalence), reaching a weekly peak of 30% prevalence in mid-summer. Among penguin fatalities at Chester Zoo, several penguins presented signs and lesions compatible with AM; nevertheless, exoerythrocytic meronts were identified in only one case and Plasmodium spp. was identified in 5/22 birds. Phylogenetic analysis revealed at least five parasite cytb lineages of three Plasmodium species (P. matutinum, P. relictum and P. vaughani) circulating in mosquitoes at Chester Zoo; however, infections in free-living wild birds and penguins were only from P. matutinum. Plasmodium matutinum was confirmed as the cause of death of one penguin and was highly suspected to be the cause of death of another three. The lineage LINN1 was associated with 4/5 penguin infections. AM had a key role in the penguin multicausal mortality event. Understanding the risk of AM to penguin collections at Chester Zoo and elsewhere requires long-term surveillance to examine the association between Plasmodium infection and penguin mortality and the variability in parasite virulence. Surveillance of Plasmodium spp. in mosquitoes and local birds provides information about the parasite's transmission cycle locally, and could warn about infection risks to species of interest, which is essential for efficient disease control and prevention.

11.
Malar J ; 21(1): 14, 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-34986864

RESUMEN

BACKGROUND: The order Accipitriformes comprises the largest group of birds of prey with 260 species in four families. So far, 21 haemosporidian parasite species have been described from or reported to occur in accipitriform birds. Only five of these parasite species have been characterized molecular genetically. The first part of this study involved molecular genetic screening of accipitriform raptors from Austria and Bosnia-Herzegovina and the first chromogenic in situ hybridization approach targeting parasites in this host group. The aim of the second part of this study was to summarize the CytB sequence data of haemosporidian parasites from accipitriform raptors and to visualize the geographic and host distribution of the lineages. METHODS: Blood and tissue samples of 183 accipitriform raptors from Austria and Bosnia-Herzegovina were screened for Plasmodium, Haemoproteus and Leucocytozoon parasites by nested PCR, and tissue samples of 23 PCR-positive birds were subjected to chromogenic in situ hybridization using genus-specific probes targeting the parasites' 18S rRNAs. All published CytB sequence data from accipitriform raptors were analysed, phylogenetic trees were calculated, and DNA haplotype network analyses were performed with sequences from clades featuring multiple lineages detected in this host group. RESULTS: Of the 183 raptors from Austria and Bosnia-Herzegovina screened by PCR and sequencing, 80 individuals (44%) were infected with haemosporidian parasites. Among the 39 CytB lineages detected, 18 were found for the first time in the present study. The chromogenic in situ hybridization revealed exo-erythrocytic tissue stages of Leucocytozoon parasites belonging to the Leucocytozoon toddi species group in the kidneys of 14 infected birds. The total number of CytB lineages recorded in accipitriform birds worldwide was 57 for Leucocytozoon, 25 for Plasmodium, and 21 for Haemoproteus. CONCLUSION: The analysis of the DNA haplotype networks allowed identifying numerous distinct groups of lineages, which have not yet been linked to morphospecies, and many of them likely belong to yet undescribed parasite species. Tissue stages of Leucocytozoon parasites developing in accipitriform raptors were discovered and described. The majority of Leucocytozoon and Haemoproteus lineages are specific to this host group, but most Plasmodium lineages were found in birds of other orders. This might indicate local transmission from birds kept at the same facilities (raptor rescue centres and zoos), likely resulting in abortive infections. To clarify the taxonomic and systematic problems, combined morphological and molecular genetic analyses on a wider range of accipitriform host species are needed.


Asunto(s)
Enfermedades de las Aves/parasitología , Falconiformes , Haemosporida/aislamiento & purificación , Infecciones Protozoarias en Animales/parasitología , Animales , Austria , Bosnia y Herzegovina , Haemosporida/clasificación , Haemosporida/fisiología , Filogenia , ARN Protozoario/análisis , ARN Ribosómico 18S/análisis , Rapaces , Especificidad de la Especie
12.
Malar J ; 20(1): 417, 2021 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-34688278

RESUMEN

BACKGROUND: Haemosporidioses are common in birds and their manifestations range from subclinical infections to severe disease, depending on the involved parasite and bird species. Clinical haemosporidioses are often observed in non-adapted zoo or aviary birds, whereas in wild birds, particularly passerines, haemosporidian infections frequently seem to be asymptomatic. However, a recent study from Austria showed pathogenic haemosporidian infections in common blackbirds due to high parasite burdens of Plasmodium matutinum LINN1, a common parasite in this bird species, suggesting that virulent infections also occur in natural hosts. Based on these findings, the present study aimed to explore whether and to what extent other native bird species are possibly affected by pathogenic haemosporidian lineages, contributing to avian morbidity. METHODS: Carcasses of passerine birds and woodpeckers were collected during a citizen science-based survey for avian mortality in Austria, from June to October 2020. Tissue samples were taken and examined for haemosporidian parasites of the genera Plasmodium, Haemoproteus and Leucocytozoon by nested PCR and sequencing the mitochondrial cytb barcode region, histology, and chromogenic in situ hybridization applying genus-specific probes. RESULTS: From over 160 dead bird reportings, 83 carcasses of 25 avian species were submitted for investigation. Overall haemosporidian infection rate was 31%, with finches and tits prevailing species counts and infections. Sequence analyses revealed 17 different haplotypes (4 Plasmodium, 4 Haemoproteus, 9 Leucocytozoon), including 4 novel Leucocytozoon lineages. Most infected birds presented low parasite burdens in the peripheral blood and tissues, ruling out a significant contribution of haemosporidian infections to morbidity or death of the examined birds. However, two great tits showed signs of avian malaria, suggesting pathogenic effects of the detected species Plasmodium relictum SGS1 and Plasmodium elongatum GRW06. Further, exo-erythrocytic tissue stages of several haemosporidian lineages are reported. CONCLUSIONS: While suggesting generally little contribution of haemosporidian infections to mortality of the investigated bird species, the findings indicate a possible role of certain haemosporidian lineages in overall clinical manifestation, either as main causes or as concurrent disease agents. Further, the study presents new data on exo-erythrocytic stages of previously reported lineages and shows how citizen science can be used in the field of haemosporidian research.


Asunto(s)
Enfermedades de las Aves/mortalidad , Ciencia Ciudadana , Haemosporida/fisiología , Infecciones Protozoarias en Animales/epidemiología , Pájaros Cantores , Animales , Animales Salvajes , Austria/epidemiología , Enfermedades de las Aves/parasitología , Prevalencia , Infecciones Protozoarias en Animales/parasitología
13.
Malar J ; 19(1): 335, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32933526

RESUMEN

BACKGROUND: Haemosporidians (Apicomplexa, Protista) are obligate heteroxenous parasites of vertebrates and blood-sucking dipteran insects. Avian haemosporidians comprise more than 250 species traditionally classified into four genera, Plasmodium, Haemoproteus, Leucocytozoon, and Fallisia. However, analyses of the mitochondrial CytB gene revealed a vast variety of lineages not yet linked to morphospecies. This study aimed to analyse and discuss the data of haemosporidian lineages isolated from birds of the family Turdidae, to visualise host and geographic distribution using DNA haplotype networks and to suggest directions for taxonomy research on parasite species. METHODS: Haemosporidian CytB sequence data from 350 thrushes were analysed for the present study and complemented with CytB data of avian haemosporidians gathered from Genbank and MalAvi database. Maximum Likelihood trees were calculated to identify clades featuring lineages isolated from Turdidae species. For each clade, DNA haplotype networks were calculated and provided with information on host and geographic distribution. RESULTS: In species of the Turdidae, this study identified 82 Plasmodium, 37 Haemoproteus, and 119 Leucocytozoon lineages, 68, 28, and 112 of which are mainly found in this host group. Most of these lineages cluster in the clades, which are shown as DNA haplotype networks. The lineages of the Leucocytozoon clades were almost exclusively isolated from thrushes and usually were restricted to one host genus, whereas the Plasmodium and Haemoproteus networks featured multiple lineages also recovered from other passeriform and non-passeriform birds. CONCLUSION: This study represents the first attempt to summarise information on the haemosporidian parasite lineages of a whole bird family. The analyses allowed the identification of numerous groups of related lineages, which have not been linked to morphologically defined species yet, and they revealed several cases in which CytB lineages were probably assigned to the wrong morphospecies. These taxonomic issues are addressed by comparing distributional patterns of the CytB lineages with data from the original species descriptions and further literature. The authors also discuss the availability of sequence data and emphasise that MalAvi database should be considered an extremely valuable addition to GenBank, but not a replacement.


Asunto(s)
Enfermedades de las Aves/epidemiología , Haemosporida/fisiología , Interacciones Huésped-Parásitos , Infecciones Protozoarias en Animales/epidemiología , Pájaros Cantores , Animales , Enfermedades de las Aves/parasitología , Filogeografía , Prevalencia , Infecciones Protozoarias en Animales/parasitología
14.
Biomed Opt Express ; 11(4): 2085-2097, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32341868

RESUMEN

Diagnostic classification techniques used to diagnose cataracts, the world's leading cause of blindness, are currently based on subjective methods. Here, we present optical coherence tomography as a noninvasive tool for volumetric visualization of lesions formed in the crystalline lens. A custom-made swept-source optical coherence tomography (SS-OCT) system was utilized to investigate the murine crystalline lens. In addition to imaging cataractous lesions in aged wildtype mice, we studied the structure and shape of cataracts in a mouse model of Alzheimer's disease. Hyperscattering opacifications in the crystalline lens were observed in both groups. Post mortem histological analysis were performed to correlate findings in the anterior and posterior part of the lens to 3D OCT in vivo imaging. Our results showcase the capability of OCT to rapidly visualize cataractous lesions in the murine lens and suggest that OCT might be a valuable tool that provides additional insight for preclinical studies of cataract formation.

15.
Malar J ; 19(1): 69, 2020 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-32050970

RESUMEN

BACKGROUND: Passerine birds are frequently infected with diverse haemosporidian parasites. While infections are traditionally considered benign in wild birds, recent studies demonstrated mortalities of passerine species due to exo-erythrocytic development of the parasites, which can damage organs in affected hosts. However, exo-erythrocytic development remains insufficiently investigated for most haemosporidian species and thus little is known about the virulence of tissue stages in wild passerine birds. The aim of the present study was to investigate natural haemosporidian infections in deceased Eurasian blackbirds (Turdus merula) and song thrushes (Turdus philomelos) and to determine parasite burden and associated histological effects. METHODS: For molecular analysis, blood and tissue samples from 306 thrushes were screened for Plasmodium, Haemoproteus and Leucocytozoon parasites by nested PCR. For the detection of parasite stages in organ samples, tissue sections were subjected to chromogenic in situ hybridization (CISH) using genus- and species-specific probes targeting the rRNAs of parasites. Exo-erythrocytic parasite burden was semi-quantitatively assessed and histological lesions were evaluated in haematoxylin-eosin-stained sections. RESULTS: By PCR, 179 of 277 Eurasian blackbirds and 15 of 29 song thrushes were positive for haemosporidians. Parasites of all three genera were detected, with Plasmodium matutinum LINN1 and Plasmodium vaughani SYAT05 showing the highest prevalence. CISH revealed significant differences in exo-erythrocytic parasite burden between lineages in Eurasian blackbirds, with P. matutinum LINN1 frequently causing high exo-erythrocytic parasite burdens in various organs that were associated with histological alterations. Song thrushes infected with P. matutinum LINN1 and birds infected with other haemosporidian lineages showed mostly low exo-erythrocytic parasite burdens. Two Eurasian blackbirds infected with Leucocytozoon sp. TUMER01 showed megalomeronts in various organs that were associated with inflammatory reactions and necroses. CONCLUSION: This study suggests that P. matutinum LINN1, a common lineage among native thrushes, regularly causes high exo-erythrocytic parasite burdens in Eurasian blackbirds, which may result in disease and mortalities, indicating its high pathogenic potential. The findings further illustrate that the same parasite lineage may show different levels of virulence in related bird species which should be considered when assessing the pathogenicity of haemosporidian parasite species. Finally, the study provides evidence of virulent Leucocytozoon sp. TUMER01 infections in two Eurasian blackbirds caused by megalomeront formation.


Asunto(s)
Enfermedades de las Aves/parasitología , Haemosporida/fisiología , Infecciones Protozoarias en Animales/parasitología , Pájaros Cantores/parasitología , Animales , Animales Salvajes , Austria , Bolsa de Fabricio/parasitología , ADN Protozoario/genética , ADN Protozoario/aislamiento & purificación , Haemosporida/genética , Haemosporida/aislamiento & purificación , Haemosporida/patogenicidad , Corazón/parasitología , Hibridación in Situ/métodos , Hibridación in Situ/veterinaria , Riñón/parasitología , Plasmodium/clasificación , Plasmodium/genética , Plasmodium/aislamiento & purificación , Reacción en Cadena de la Polimerasa/veterinaria , Especificidad de la Especie , Virulencia
16.
Neurophotonics ; 7(1): 015006, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32042855

RESUMEN

Significance. Recent Alzheimer's disease (AD) patient studies have focused on retinal analysis, as the retina is the only part of the central nervous system that can be imaged noninvasively by optical methods. However, as this is a relatively new approach, the occurrence and role of retinal pathological features are still debated. Aim. The retina of an APP/PS1 mouse model was investigated using multicontrast optical coherence tomography (OCT) in order to provide a documentation of what was observed in both transgenic and wild-type mice. Approach. Both eyes of 24 APP/PS1 transgenic mice (age: 45 to 104 weeks) and 15 age-matched wild-type littermates were imaged by the custom-built OCT system. At the end of the experiment, retinas and brains were harvested from a subset of the mice (14 transgenic, 7 age-matched control) in order to compare the in vivo results to histological analysis and to quantify the cortical amyloid beta plaque load. Results. The system provided a combination of standard reflectivity data, polarization-sensitive data, and OCT angiograms. Qualitative and quantitative information from the resultant OCT images was extracted on retinal layer thickness and structure, presence of hyper-reflective foci, phase retardation abnormalities, and retinal vasculature. Conclusions. Although multicontrast OCT revealed abnormal structural properties and phase retardation signals in the retina of this APP/PS1 mouse model, the observations were very similar in transgenic and control mice.

17.
Malar J ; 18(1): 305, 2019 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-31481072

RESUMEN

BACKGROUND: Plasmodium species feature only four to eight nuclear ribosomal units on different chromosomes, which are assumed to evolve independently according to a birth-and-death model, in which new variants originate by duplication and others are deleted throughout time. Moreover, distinct ribosomal units were shown to be expressed during different developmental stages in the vertebrate and mosquito hosts. Here, the 18S rDNA sequences of 32 species of avian haemosporidian parasites are reported and compared to those of simian and rodent Plasmodium species. METHODS: Almost the entire 18S rDNAs of avian haemosporidians belonging to the genera Plasmodium (7), Haemoproteus (9), and Leucocytozoon (16) were obtained by PCR, molecular cloning, and sequencing ten clones each. Phylogenetic trees were calculated and sequence patterns were analysed and compared to those of simian and rodent malaria species. A section of the mitochondrial CytB was also sequenced. RESULTS: Sequence patterns in most avian Plasmodium species were similar to those in the mammalian parasites with most species featuring two distinct 18S rDNA sequence clusters. Distinct 18S variants were also found in Haemoproteus tartakovskyi and the three Leucocytozoon species, whereas the other species featured sets of similar haplotypes. The 18S rDNA GC-contents of the Leucocytozoon toddi complex and the subgenus Parahaemoproteus were extremely high with 49.3% and 44.9%, respectively. The 18S sequences of several species from all three genera showed chimeric features, thus indicating recombination. CONCLUSION: Gene duplication events leading to two diverged main sequence clusters happened independently in at least six out of seven avian Plasmodium species, thus supporting evolution according to a birth-and-death model like proposed for the ribosomal units of simian and rodent Plasmodium species. Patterns were similar in the 18S rDNAs of the Leucocytozoon toddi complex and Haemoproteus tartakovskyi. However, the 18S rDNAs of the other species seem to evolve in concerted fashion like in most eukaryotes, but the presence of chimeric variants indicates that the ribosomal units rather evolve in a semi-concerted manner. The new data may provide a basis for studies testing whether differential expression of distinct 18S rDNA also occurs in avian Plasmodium species and related haemosporidian parasites.


Asunto(s)
Aves/parasitología , ADN Protozoario/análisis , Haemosporida/genética , ARN Ribosómico 18S/análisis , Animales , Enfermedades de las Aves/parasitología , Núcleo Celular/genética , ADN Ribosómico/análisis , Filogenia , Plasmodium/genética , Especificidad de la Especie
18.
Acta Trop ; 197: 105051, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31181190

RESUMEN

Species of Haemoproteus (Haemosporida, Haemoproteidae) are widespread and often prevalent blood parasites of birds all over the word. They are particularly diverse in tropical countries. Due to limited knowledge of life cycles, these pathogens usually have been considered relatively benign and were neglected in veterinary medicine and bird management. However, recent molecular studies provided evidence that Haemoproteus parasites might cause severe diseases if they infect non-adapted (wrong) avian hosts due to marked damage of organs by exo-erythrocytic stages (megalomeronts). Additionally, high Haemoproteus infections are lethal to blood-sucking insects. Molecular markers are essential for reliable detection and species identification both at tissue stages in vertebrates and sporogonic stages in arthropods however, remain insufficiently developed for wildlife haemosporidian parasites. This study combined PCR-based and microscopic approaches and reported cytochrome b gene (cytb) and apicoplast gene (clpc) markers for characterization of six widespread species of haemoproteids parasitizing common birds wintering in tropics and subtropics of the Old World. Three new Haemoproteus species were described using morphological and molecular markers. Molecular characterization of haemoproteids parasitizing falcons was developed. Morphological and phylogenetic characterization of Haemoproteus tinnunculi (cytb lineage hFALSUB01), H. brachiatus (hLK03), H. parabelopolskyi (hSYAT1), H. homogeneae n. sp. (hSYAT16), H. homopicae n. sp. (hGAGLA07) and H. homominutus n. sp. (hCUKI1) was performed and provides clues for infections diagnostics. This study adds three species to the group of morphologically readily distinct Haemoproteus parasites, which differ in few base pairs (< 1%) in their partial cytb sequences, indicating that low genetic difference in such sequences often show between-species divergence and should be carefully applied in taxonomic biodiversity studies of haemosporidian parasites. Bayesian phylogenetic analysis identified the position of detected lineages in regard of other Haemoproteus species, suggesting that all reported parasites belong to subgenus Parahaemoproteus and likely are transmitted by Culicoides biting midges. Importance of clpc gene sequences was specified in haemosporidian parasite taxonomy on species levels.


Asunto(s)
Aves/parasitología , Haemosporida/clasificación , Haemosporida/genética , Animales , Teorema de Bayes , Citocromos b/genética , Filogenia
19.
Parasit Vectors ; 12(1): 282, 2019 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-31159851

RESUMEN

BACKGROUND: Avian haemosporidian parasites can cause severe disease in their hosts due to excessive exo-erythrocytic merogony and anaemia caused by blood stages. Notably, the development of megalomeronts by species of Haemoproteus and Leucocytozoon has been associated with mortalities in birds. Diagnosis of lethal infections is currently accomplished by the detection of parasites' tissue stages in histological sections combined with PCR and sequencing. However, sequences frequently are not reliably obtained and the generic discrimination of exo-erythrocytic tissue stages based on morphological characters is challenging. Therefore, the present study aimed at developing specific molecular probes for the identification of Haemoproteus spp. and Leucocytozoon spp. in histological sections using chromogenic in situ hybridization. METHODS: Parasite subgenus-specific oligonucleotide probes were designed to target the 18S ribosomal RNA of Haemoproteus species (subgenus Parahaemoproteus) and Leucocytozoon spp. (subgenus Leucocytozoon) and were in situ hybridized to sections from formalin-fixed, paraffin-embedded tissue samples determined positive for these parasites by PCR and histopathology. To confirm the presence of parasites at sites of probe hybridization, consecutive sections were stained with haematoxylin-eosin and examined. RESULTS: Parahaemoproteus- and Leucocytozoon-specific probes labelled erythrocytic and exo-erythrocytic stages of Haemoproteus spp. and Leucocytozoon spp., respectively. Binding of probes to parasites was consistent with detection of the same exo-erythrocytic meronts in consecutive haematoxylin-eosin-stained sections. Cross-reactivity of the probes was ruled out by negative chromogenic in situ hybridization when applied to samples positive for a parasite of a genus different from the probes' target. CONCLUSIONS: Chromogenic in situ hybridization using 18S ribosomal RNA-specific oligonucleotide probes reliably identifies and discriminates Haemoproteus and Leucocytozoon parasites in tissue sections and enables unequivocal diagnosis of haemosporidioses.


Asunto(s)
Aves/parasitología , Haemosporida/genética , Sondas Moleculares , Infecciones Protozoarias en Animales/diagnóstico , Animales , Enfermedades de las Aves/diagnóstico , Compuestos Cromogénicos/química , ADN Protozoario/genética , Haemosporida/aislamiento & purificación , Hibridación in Situ , Filogenia , Reacción en Cadena de la Polimerasa , ARN Ribosómico 18S/genética
20.
Parasitol Res ; 118(4): 1261-1269, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30783859

RESUMEN

Avian malaria (Plasmodium spp.) and kinetoplastid (Trypanosoma spp.) parasites are common vector-borne pathogens in birds worldwide; however, knowledge about vector competence of different mosquito species is currently lacking. For a pilot project examining vector competence of mosquitoes of the Culex pipiens complex and Culex torrentium for protozoan parasites in the city of Vienna, 316 individual mosquitoes were sampled in the months June-August 2017 around the campus of the Veterinary University of Vienna. Since vector competence for avian Plasmodium can only be ascertained by finding infectious sporozoites in mosquito salivary glands, special emphasis was on examining these, or at least insect thoraxes, which contain the salivary glands. After species identification, the mosquitoes were processed in three different ways to determine the best method of visually detecting protozoan parasites in salivary glands: (1) microscopic examination of individual, fixed and Giemsa-stained salivary glands, (2) microscopic examination of stained sections of individually fixed and embedded mosquito thoraxes and (3) stained sections of individual whole insects. Material from all three groups was also subjected to PCR to detect avian haemosporidian and trypanosomatid parasite DNA. PCR was performed on all 316 collected mosquitoes, with 37 pools (n = 2-10) of 263 individuals and 53 single individuals in all together 90 PCR reactions. Avian Plasmodium was found in 18 (20%) and trypanosomatid parasites were found in 10 (11.1%) of the examined samples and pools yielded a higher proportion of positives than did individual samples. Six different species of protozoan parasites were identified, namely Plasmodium vaughani SYAT05 which was the most common, P. elongatum GRW6, P. relictum SGS1, Trypanosoma avium, T. culicavium and Crithidia dedva. Seventy-seven mosquito salivary glands were dissected and stained with Giemsa solution. Of these, one (1.3%) featured sporozoites and one (1.3%) trypanosomatid parasites. While the trypanosomes were identified as T. avium, the avian Plasmodium species were present in a mixed infection with P. vaughani SYAT05 as the dominant species. In conclusion, mosquitoes of the Culex pipiens complex are very likely vectors of different avian Plasmodium and Trypanosoma species and PCR was the most successful and reliable method for parasite detection in mosquito samples, delivering higher rates and more accurate results. The visual detection of parasite stages in the salivary glands was more difficult and only a few specimens were detected using Giemsa stain and chromogenic in situ hybridization. For further studies on vector competence of different protozoan parasites in mosquitoes, the use of PCR-based methods would be preferable.


Asunto(s)
Culex/parasitología , Malaria Aviar/transmisión , Mosquitos Vectores/parasitología , Plasmodium/aislamiento & purificación , Glándulas Salivales/parasitología , Esporozoítos/aislamiento & purificación , Trypanosoma/aislamiento & purificación , Animales , Aves/parasitología , ADN Protozoario/análisis , Malaria Aviar/parasitología , Proyectos Piloto , Plasmodium/clasificación , Plasmodium/genética , Reacción en Cadena de la Polimerasa , Trypanosoma/clasificación , Trypanosoma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA