Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39229111

RESUMEN

Serratia marcescens is a healthcare-associated pathogen that causes bloodstream infections, pneumonia, and urinary tract infections. The capsule polysaccharide of S. marcescens is a critical fitness determinant during infection and recent work established the relationship between capsule locus (KL) genetic sequences within the species. Strains belonging to KL1 and KL2 capsule clades produce sialylated polysaccharides and represent the largest subpopulation of isolates from clinical origin while the S. marcescens type strain and other environmental isolates were classified as KL5. In this work, the contribution of these and other capsules to pathogenesis in multiple infection models was determined. Using a murine tail vein injection model of bacteremia, clinical strains demonstrated capsule-dependent colonization of spleen, liver, and kidney following inoculation. The KL5 strain, in contrast, exhibited no loss of survival in this model when capsule genes were deleted. Furthermore, the wild-type KL5 strain was cleared more rapidly from both the spleen and liver compared to a KL1 strain. Similar results were observed in a bacteremic pneumonia model in that all tested strains of clinical origin demonstrated a requirement for capsule in both the primary lung infection site and for bloodstream dissemination to other organs. Finally, strains from each KL clade were tested for the role of capsule in internalization by bone marrow-derived macrophages. Only the sialylated KL1 and KL2 clade strains, representing the majority of clinical isolates, exhibited capsule-dependent inhibition of internalization, suggesting that capsule-mediated resistance to macrophage phagocytosis may enhance survival and antibacterial defenses during infection.

2.
PLoS Pathog ; 20(8): e1012495, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39178317

RESUMEN

There is a critical gap in knowledge about how Gram-negative bacterial pathogens, using survival strategies developed for other niches, cause lethal bacteremia. Facultative anaerobic species of the Enterobacterales order are the most common cause of Gram-negative bacteremia, including Escherichia coli, Klebsiella pneumoniae, Serratia marcescens, Citrobacter freundii, and Enterobacter hormaechei. Bacteremia often leads to sepsis, a life-threatening organ dysfunction resulting from unregulated immune responses to infection. Despite a lack of specialization for this host environment, Gram-negative pathogens cause nearly half of bacteremia cases annually. Based on our existing Tn-Seq fitness factor data from a murine model of bacteremia combined with comparative genomics of the five Enterobacterales species above, we prioritized 18 conserved fitness genes or operons for further characterization. Mutants were constructed for all genes in all five species. Each mutant was used to cochallenge C57BL/6 mice via tail vein injection along with each respective wild-type strain to determine competitive indices for each fitness gene. Five fitness factor genes, when mutated, attenuated mutants in four or five species in the spleen and liver (tatC, ruvA, gmhB, wzxE, arcA). Five additional fitness factor genes or operons were validated as outcompeted by wild-type in three, four, or five bacterial species in the spleen (xerC, prc, apaGH, atpG, aroC). Overall, 17 of 18 fitness factor mutants were attenuated in at least one species in the spleen or liver. Together, these findings allow for the development of a model of bacteremia pathogenesis that may include future targets of therapy against bloodstream infections.


Asunto(s)
Bacteriemia , Genoma Bacteriano , Animales , Bacteriemia/microbiología , Ratones , Ratones Endogámicos C57BL , Infecciones por Enterobacteriaceae/microbiología , Infecciones por Enterobacteriaceae/genética , Infecciones por Enterobacteriaceae/inmunología , Enterobacteriaceae/genética , Enterobacteriaceae/patogenicidad , Proteínas Bacterianas/genética , Femenino , Modelos Animales de Enfermedad
3.
PLoS Pathog ; 18(3): e1010423, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35353877

RESUMEN

Serratia marcescens is a versatile opportunistic pathogen that can cause a variety of infections, including bacteremia. Our previous work established that the capsule polysaccharide (CPS) biosynthesis and translocation locus contributes to the survival of S. marcescens in a murine model of bacteremia and in human serum. In this study, we determined the degree of capsule genetic diversity among S. marcescens isolates. Capsule loci (KL) were extracted from >300 S. marcescens genome sequences and compared. A phylogenetic comparison of KL sequences demonstrated a substantial level of KL diversity within S. marcescens as a species and a strong delineation between KL sequences originating from infection isolates versus environmental isolates. Strains from five of the identified KL types were selected for further study and electrophoretic analysis of purified CPS indicated the production of distinct glycans. Polysaccharide composition analysis confirmed this observation and identified the constituent monosaccharides for each strain. Two predominant infection-associated clades, designated KL1 and KL2, emerged from the capsule phylogeny. Bacteremia strains from KL1 and KL2 were determined to produce ketodeoxynonulonic acid and N-acetylneuraminic acid, two sialic acids that were not found in strains from other clades. Further investigation of KL1 and KL2 sequences identified two genes, designated neuA and neuB, that were hypothesized to encode sialic acid biosynthesis functions. Disruption of neuB in a KL1 isolate resulted in the loss of sialic acid and CPS production. The absence of sialic acid and CPS production also led to increased susceptibility to internalization by a human monocytic cell line, demonstrating that S. marcescens phagocytosis resistance requires CPS. Together, these results establish the capsule genetic repertoire of S. marcescens and identify infection-associated clades with sialic acid CPS components.


Asunto(s)
Bacteriemia , Infecciones por Serratia , Animales , Humanos , Ratones , Ácido N-Acetilneuramínico , Filogenia , Serratia marcescens/genética
4.
Infect Immun ; 90(2): e0027521, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-34871042

RESUMEN

Uropathogenic Escherichia coli (UPEC) causes the majority of uncomplicated urinary tract infections (UTI), which affect nearly half of women worldwide. Many UPEC strains carry an annotated intimin-like adhesin (ila) locus in their genome related to a well-characterized virulence factor in diarrheagenic E. coli pathotypes. Its role in UPEC uropathogenesis, however, remains unknown. In prototype UPEC strain CFT073, there is an ila locus that contains three predicted intimin-like genes, sinH, sinI, and ratA. We used in silico approaches to determine the phylogeny and genomic distribution of this locus among uropathogens. We found that the currently annotated intimin locus-encoded proteins in CFT073 are more closely related to invasin proteins found in Salmonella. Deletion of the individual sinH, sinI, and ratA genes did not result in measurable effects on growth, biofilm formation, or motility in vitro. On average, sinH was more highly expressed in clinical strains during active human UTI than in human urine ex vivo. Unexpectedly, we found that strains lacking this ila locus had increased adherence to bladder cells in vitro, coupled with a decrease in bladder cell invasion and death. The sinH mutant displayed a significant fitness defect in the murine model of ascending UTI, including reduced inflammation in the bladder. These data confirmed an inhibitory role in bladder cell adherence to facilitate invasion and inflammation; therefore, the ila locus should be termed invasin-like rather than intimin-like. Collectively, our data suggest that loss of this locus mediates measurable interactions with bladder cells in vitro and contributes to fitness during UTI.


Asunto(s)
Infecciones por Escherichia coli , Proteínas de Escherichia coli , Infecciones Urinarias , Escherichia coli Uropatógena , Adhesinas Bacterianas/genética , Adhesinas Bacterianas/metabolismo , Animales , Infecciones por Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Femenino , Islas Genómicas/genética , Humanos , Inflamación/genética , Masculino , Ratones , Infecciones Urinarias/genética , Urotelio
5.
Appl Environ Microbiol ; 86(13)2020 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-32358013

RESUMEN

Urinary tract infections (UTI), the second most diagnosed infectious disease worldwide, are caused primarily by uropathogenic Escherichia coli (UPEC), placing a significant financial burden on the health care system. High-throughput transposon mutagenesis combined with genome-targeted sequencing is a powerful technique to interrogate genomes for fitness genes. Genome-wide analysis of E. coli requires random libraries of at least 50,000 mutants to achieve 99.99% saturation; however, the traditional murine model of ascending UTI does not permit testing of large mutant pools due to a bottleneck during infection. To address this, an E. coli CFT073 transposon mutant ordered library of 9,216 mutants was created and insertion sites were identified. A single transposon mutant was selected for each gene to assemble a condensed library consisting of 2,913 unique nonessential mutants. Using a modified UTI model in BALB/c mice, we identified 36 genes important for colonizing the bladder, including purB, yihE, and carB Screening of the condensed library in vitro identified yigP and ubiG to be essential for growth in human urine. Additionally, we developed a novel quantitative PCR (qPCR) technique to identify genes with fitness defects within defined subgroups of related genes (e.g., genes encoding fimbriae, toxins, etc.) following UTI. The number of mutants within these subgroups circumvents bottleneck restriction and facilitates validation of multiple mutants to generate individual competitive indices. Collectively, this study investigates the bottleneck effects during UTI, provides two techniques for evading those effects that can be applied to other disease models, and contributes a genetic tool in prototype strain CFT073 to the field.IMPORTANCE Uropathogenic Escherichia coli strains cause most uncomplicated urinary tract infections (UTI), one of the most common infectious diseases worldwide. Random transposon mutagenesis techniques have been utilized to identify essential bacterial genes during infection; however, this has been met with limitations when applied to the murine UTI model. Conventional high-throughput transposon mutagenesis screens are not feasible because of inoculum size restrictions due to a bottleneck during infection. Our study utilizes a condensed ordered transposon library, limiting the number of mutants while maintaining the largest possible genome coverage. Screening of this library in vivo, and in human urine in vitro, identified numerous candidate fitness factors. Additionally, we have developed a novel technique using qPCR to quantify bacterial outputs following infection with small subgroups of transposon mutants. Molecular approaches developed in this study will serve as useful tools to probe in vivo models that are restricted by anatomical, physiological, or genetic bottleneck limitations.


Asunto(s)
Elementos Transponibles de ADN , Infecciones por Escherichia coli/microbiología , Biblioteca de Genes , Aptitud Genética/fisiología , Infecciones Urinarias/microbiología , Escherichia coli Uropatógena/genética , Animales , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C
6.
mBio ; 11(2)2020 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32345645

RESUMEN

Urinary tract infections (UTI) affect half of all women at least once during their lifetime. The rise in the numbers of extended-spectrum beta-lactamase-producing strains and the potential for carbapenem resistance within uropathogenic Escherichia coli (UPEC), the most common causative agent of UTI, create an urgent need for vaccine development. Intranasal immunization of mice with UPEC outer membrane iron receptors FyuA, Hma, IreA, and IutA, conjugated to cholera toxin, provides protection in the bladder or kidneys under conditions of challenge with UPEC strain CFT073 or strain 536. On the basis of these data, we sought to optimize the vaccination route (intramuscular, intranasal, or subcutaneous) in combination with adjuvants suitable for human use, including aluminum hydroxide gel (alum), monophosphoryl lipid A (MPLA), unmethylated CpG synthetic oligodeoxynucleotides (CpG), polyinosinic:polycytidylic acid (polyIC), and mutated heat-labile E. coli enterotoxin (dmLT). Mice intranasally vaccinated with dmLT-IutA and dmLT-Hma displayed significant reductions in bladder colonization (86-fold and 32-fold, respectively), with 40% to 42% of mice having no detectable CFU. Intranasal vaccination of mice with CpG-IutA and polyIC-IutA significantly reduced kidney colonization (131-fold) and urine CFU (22-fold), respectively. dmLT generated the most consistently robust antibody response in intranasally immunized mice, while MPLA and alum produced greater concentrations of antigen-specific serum IgG with intramuscular immunization. On the basis of these results, we conclude that intranasal administration of Hma or IutA formulated with dmLT adjuvant provides the greatest protection from UPEC UTI. This report advances our progress toward a vaccine against uncomplicated UTI, which will significantly improve the quality of life for women burdened by recurrent UTI and enable better antibiotic stewardship.IMPORTANCE Urinary tract infections (UTI) are among the most common bacterial infection in humans, affecting half of all women at least once during their lifetimes. The rise in antibiotic resistance and health care costs emphasizes the need to develop a vaccine against the most common UTI pathogen, Escherichia coli Vaccinating mice intranasally with a detoxified heat-labile enterotoxin and two surface-exposed receptors, Hma or IutA, significantly reduced bacterial burden in the bladder. This work highlights progress in the development of a UTI vaccine formulated with adjuvants suitable for human use and antigens that encode outer membrane iron receptors required for infection in the iron-limited urinary tract.


Asunto(s)
Administración Intranasal , Proteínas de Escherichia coli/inmunología , Infecciones Urinarias/prevención & control , Escherichia coli Uropatógena/inmunología , Vacunas/uso terapéutico , Adyuvantes Inmunológicos/administración & dosificación , Adyuvantes Inmunológicos/farmacología , Animales , Anticuerpos Antibacterianos/sangre , Proteínas de la Membrana Bacteriana Externa/inmunología , Vías de Administración de Medicamentos , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/prevención & control , Infecciones por Escherichia coli/terapia , Femenino , Humanos , Inmunización/métodos , Ratones , Receptores de Superficie Celular/inmunología , Infecciones Urinarias/microbiología , Infecciones Urinarias/terapia , Escherichia coli Uropatógena/patogenicidad , Vacunación/métodos , Vacunas/administración & dosificación
7.
PLoS Pathog ; 16(2): e1008382, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32106241

RESUMEN

The energy required for a bacterium to grow and colonize the host is generated by metabolic and respiratory functions of the cell. Proton motive force, produced by these processes, drives cellular mechanisms including redox balance, membrane potential, motility, acid resistance, and the import and export of substrates. Previously, disruption of succinate dehydrogenase (sdhB) and fumarate reductase (frdA) within the oxidative and reductive tricarboxylic acid (TCA) pathways in uropathogenic E. coli (UPEC) CFT073 indicated that the oxidative, but not the reductive TCA pathway, is required for fitness in the urinary tract. Those findings led to the hypothesis that fumA and fumC encoding fumarase enzymes of the oxidative TCA cycle would be required for UPEC colonization, while fumB of the reductive TCA pathway would be dispensable. However, only UPEC strains lacking fumC had a fitness defect during experimental urinary tract infection (UTI). To further characterize the role of respiration in UPEC during UTI, additional mutants disrupting both the oxidative and reductive TCA pathways were constructed. We found that knock-out of frdA in the sdhB mutant strain background ameliorated the fitness defect observed in the bladder and kidneys for the sdhB mutant strain and results in a fitness advantage in the bladder during experimental UTI. The fitness defect was restored in the sdhBfrdA double mutant by complementation with frdABCD. Taken together, we demonstrate that it is not the oxidative or reductive pathway that is important for UPEC fitness per se, but rather only the oxidative TCA enzyme FumC. This fumarase lacks an iron-sulfur cluster and is required for UPEC fitness during UTI, most likely acting as a counter measure against exogenous stressors, especially in the iron-limited bladder niche.


Asunto(s)
Fumarato Hidratasa/metabolismo , Hierro/metabolismo , Escherichia coli Uropatógena/metabolismo , Animales , Ciclo del Ácido Cítrico/fisiología , Infecciones por Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Femenino , Regulación Bacteriana de la Expresión Génica/fisiología , Ratones , Ratones Endogámicos CBA , Oxidación-Reducción , Estrés Oxidativo , Infecciones Urinarias/microbiología , Escherichia coli Uropatógena/fisiología
8.
Nat Microbiol ; 5(1): 116-125, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31686025

RESUMEN

Metabolic reprogramming is associated with the adaptation of host cells to the disease environment, such as inflammation and cancer. However, little is known about microbial metabolic reprogramming or the role it plays in regulating the fitness of commensal and pathogenic bacteria in the gut. Here, we report that intestinal inflammation reprograms the metabolic pathways of Enterobacteriaceae, such as Escherichia coli LF82, in the gut to adapt to the inflammatory environment. We found that E. coli LF82 shifts its metabolism to catabolize L-serine in the inflamed gut in order to maximize its growth potential. However, L-serine catabolism has a minimal effect on its fitness in the healthy gut. In fact, the absence of genes involved in L-serine utilization reduces the competitive fitness of E. coli LF82 and Citrobacter rodentium only during inflammation. The concentration of luminal L-serine is largely dependent on dietary intake. Accordingly, withholding amino acids from the diet markedly reduces their availability in the gut lumen. Hence, inflammation-induced blooms of E. coli LF82 are significantly blunted when amino acids-particularly L-serine-are removed from the diet. Thus, the ability to catabolize L-serine increases bacterial fitness and provides Enterobacteriaceae with a growth advantage against competitors in the inflamed gut.


Asunto(s)
Dieta , Enterobacteriaceae/fisiología , Mucosa Intestinal/microbiología , Mucosa Intestinal/patología , Serina/metabolismo , Animales , Citrobacter rodentium/genética , Citrobacter rodentium/crecimiento & desarrollo , Citrobacter rodentium/metabolismo , Citrobacter rodentium/fisiología , Colitis/microbiología , Colitis/patología , Dieta/efectos adversos , Enterobacteriaceae/genética , Enterobacteriaceae/crecimiento & desarrollo , Enterobacteriaceae/metabolismo , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Escherichia coli/fisiología , Regulación Bacteriana de la Expresión Génica , Mucosa Intestinal/metabolismo , Redes y Vías Metabólicas/genética , Ratones , Ratones Endogámicos C57BL , Interacciones Microbianas , Serina/deficiencia , Organismos Libres de Patógenos Específicos
9.
Methods Mol Biol ; 2021: 61-76, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31309496

RESUMEN

Genetic mutation enables the study of the function of specific genes, particularly when a mutant is compared against its isogenic parent. In Proteus mirabilis bacteria, traditional allelic exchange mutation is labor-intensive and has a high failure rate in some strains. Likewise, there is no working protocol for lambda red recombinase-based mutation in P. mirabilis. Here we describe an alternative method of insertional mutagenesis based on retargeting of group II introns. The protocol includes steps to generate single or multiple mutations, with the possibility to delete intervening sequences of DNA.


Asunto(s)
Mutagénesis Insercional/métodos , Proteus mirabilis/genética , Proteínas Bacterianas/genética , Técnicas Bacteriológicas , Transformación Bacteriana
10.
Methods Mol Biol ; 2021: 97-108, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31309499

RESUMEN

More than 500 siderophores that bind ferric iron have been characterized and grouped by type based on their chemical structure. The chrome azurol S (CAS) assay is a universal colorimetric method that detects siderophores independent of their structure. In this assay, siderophores scavenge iron from an Fe-CAS-hexadecyltrimethylammonium bromide complex, and subsequent release of the CAS dye results in a color change from blue to orange. Solution-based experiments with CAS result in a quantitative measure of siderophore production, while an observable color change on CAS agar plates can be performed for qualitative detection of siderophores. Cross-feeding assays are another useful method to detect and characterize siderophores produced by bacteria. Under iron-limiting conditions, cross-feeding assays test the ability of an indicator strain to grow when supplied with a specific siderophore (from a test strain) to which it has a cognate receptor required for import into the cell. The cross-feeding assay can be tested with a variety of wild-type strains, siderophore biosynthesis mutants, and siderophore receptor mutants.


Asunto(s)
Hidroxibenzoatos/química , Proteus mirabilis/metabolismo , Sideróforos/análisis , Técnicas Bacteriológicas , Calorimetría , Medios de Cultivo/química , Sideróforos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...