RESUMEN
Introduction: Phylogenomics have been widely used to resolve ambiguous and controversial evolutionary relationships among plant species and genera, and the identification of unique indels in plastomes may even help to understand the evolution of some plant families. Menispermum L. (Menispermaceae) consists of three species, M. dauricum DC., M. canadense L., and M. mexicanum Rose, which are disjuncly distributed among East Asia, Eastern North America and Mexico. Taxonomists continue to debate whether M. mexicanum is a distinct species, a variety of M. dauricum, or simply a synonym of M. canadense. To date, no molecular systematics studies have included this doubtful species in phylogenetic analyses. Methods: In this study, we examined phylogenomics and phylogeography of Menispermum across its entire range using 29 whole plastomes of Menispermaceae and 18 ITS1&ITS2 sequences of Menispermeae. We reconstructed interspecific relationships of Menispermum and explored plastome evolution in Menispermaceae, revealing several genomic hotspot regions for the family. Results and discussion: Phylogenetic and network analyses based on whole plastome and ITS1&ITS2 sequences show that Menispermum clusters into two clades with high support values, Clade A (M. dauricum) and Clade B (M. canadense + M. mexicanum). However, M. mexicanum is nested within M. canadense and, as a result, we support that M. mexicanum is a synonym of M. canadense. We also identified important molecular variations in the plastomes of Menispermaceae. Several indels and consequently premature terminations of genes occur in Menispermaceae. A total of 54 regions were identified as the most highly variable plastome regions, with nucleotide diversity (Pi) values > 0.05, including two coding genes (matK, ycf1), four introns (trnK intron, rpl16 intron, rps16 intron, ndhA intron), and 48 intergenic spacer (IGS) regions. Of these, four informative hotspot regions (trnH-psbA, ndhF-rpl32, trnK-rps16, and trnP-psaJ) should be especially useful for future studies of phylogeny, phylogeography and conservation genetics of Menispermaceae.
RESUMEN
The moonseed genus Menispermum L. (Menispermaceae) is disjunctly distributed in East Asia and eastern North America. Although Menispermum has important medicinal value, genetic and genomic information is scarce, with very few available molecular markers. In the current study, we used Illumina transcriptome sequencing and de novo assembly of the two Menispermum species to obtain in-depth genetic knowledge. From de novo assembly, 53,712 and 78,921 unigenes were generated for M. canadense and M. dauricum, with 37,527 (69.87%) and 55,211 (69.96%) showing significant similarities against the six functional databases, respectively. Moreover, 521 polymorphic EST-SSRs were identified. Of them, 23 polymorphic EST-SSR markers were selected to investigate the population genetic diversity within the genus. The newly developed EST-SSR markers also revealed high transferability among the three examined Menispermaceae species. Overall, we provide the very first transcriptomic analyses of this important medicinal genus. In addition, the novel microsatellite markers developed here will aid future studies on the population genetics and phylogeographic patterns of Menispermum at the intercontinental geographical scale.
RESUMEN
BACKGROUND: The ubiquitous signaling molecule melatonin (N-acetyl-5-methoxytryptamine) (MT) plays vital roles in plant development and stress tolerance. Selenium (Se) may be phytotoxic at high concentrations. Interactions between MT and Se (IV) stress in higher plants are poorly understood. The aim of this study was to evaluate the defensive roles of exogenous MT (0 µM, 50 µM, and 100 µM) against Se (IV) (0 µM, 50 µM, 100 µM, and 200 µM) stress based on the physiological and biochemical properties, thiol biosynthesis, and antioxidant system of Brassica napus plants subjected to these treatments. RESULTS: Se (IV) stress inhibited B. napus growth and biomass accumulation, reduced pigment content, and lowered net photosynthetic rate (Pn) and PSII photochemical efficiency (Fv/Fm) in a dose-dependent manner. All of the aforementioned responses were effectively alleviated by exogenous MT treatment. Exogenous MT mitigated oxidative damage and lipid peroxidation and protected the plasma membranes from Se toxicity by reducing Se-induced reactive oxygen species (ROS) accumulation. MT also alleviated osmotic stress by restoring foliar water and sugar levels. Relative to standalone Se treatment, the combination of MT and Se upregulated the ROS-detoxifying enzymes SOD, APX, GR, and CAT, increased proline, free amino acids, and the thiol components GSH, GSSG, GSH/GSSG, NPTs, PCs, and cys and upregulated the metabolic enzymes γ-ECS, GST, and PCS. Therefore, MT application attenuates Se-induce oxidative damage in plants. MT promotes the accumulation of chelating agents in the roots, detoxifies Se there, and impedes its further translocation to the leaves. CONCLUSIONS: Exogenous MT improves the physiological traits, antioxidant system, and thiol ligand biosynthesis in B. napus subjected to Se stress primarily by enhancing Se detoxification and sequestration especially at the root level. Our results reveal better understanding of Se-phytotoxicity and Se-stress alleviation by the adequate supply of MT. The mechanisms of MT-induced plant tolerance to Se stress have potential implications in developing novel strategies for safe crop production in Se-rich soils.
Asunto(s)
Antioxidantes/metabolismo , Brassica napus/fisiología , Melatonina/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Selenio/toxicidad , Compuestos de Sulfhidrilo/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Oxidación-Reducción , Estrés Oxidativo , Hojas de la Planta/fisiología , Especies Reactivas de Oxígeno/metabolismoRESUMEN
The genus Croomia (Stemonaceae) is an excellent model for studying the evolution of the Eastern Asia (EA)-Eastern North America (ENA) floristic disjunction and the genetic mechanisms of floral zygomorphy formation. In addition to the presence of both actinomorphic and zygomorphic flowers within the genus, species are disjunctively distributed between EA and ENA. However, due to the limited availability of genomic resources, few studies of Croomia have examined these questions. In this study, we sequenced the floral and leaf transcriptomes of the zygomorphic flowered C roomia heterosepala and the actinomorphic flowered Croomia japonica, and used comparative genomic approaches to investigate the transcriptome evolution of the two closely related species. The sequencing and de novo assembly of transcriptomes from flowers of C. heterosepala (ChFlower), flowers of C. japonica (CjFlower), and leaves of C. japonica (CjLeaf) yielded 57,193, 62,131 and 64,448 unigenes, respectively. In addition, estimation of Ka/Ks ratios for 11,566 potential orthologous groups between ChFlower and CjFlower revealed that only six pairs had Ka/Ks ratios significantly greater than 1 and are likely under positive selection. A total of 429 single copy nuclear genes (SCNGs) and 21,460 expression sequence tags-simple sequence repeats (EST-SSRs) were identified in this study. Specifically, we identified seven CYC/TB1-like genes from Stemonaceae. Phylogenetic and molecular evolution analyses indicated that these CYC/TB1-like genes formed a monophyletic clade (SteTBL1) and were subject to strong purifying selection. The shifts of floral symmetry in Stemonaceae do not appear to be correlated with TBL copy number.
RESUMEN
Menispermum dauricum is a woody liana with great medicinal value. In the current study, we assembled the first chloroplast (cp) genome of M. dauricum. The whole chloroplast genome is 158,623 bp in length, with one large copy region (LSC: 88,879 bp), a small single copy region (SSC: 20,644 bp), and two inverted repeats (IR: 24,550 bp). The cp genome contains 114 unique genes with 80 protein-coding genes, 30 tRNA genes, and four rRNA genes. In our phylogeny of Ranunculales, Papaveraceae is found to be the basal group of Ranunculales and M. dauricum is sister to Stephania japonica.
RESUMEN
Coptis is one of the most important medicinal plant genera in eastern Asia. To better understand the evolution of this genus, the complete chloroplast genome of C. chinensis var. brevisepala was obtained by next-generation sequencing. The plastome of C. chinensis var. brevisepala is 155,426 bp in length, and consists of large (LSC, 84,488 bp) and small (SSC, 17,402bp) single-copy regions, separated by pair of inverted repeat regions (IRs, 26,768 bp). It harbours 111 unique genes, including 78 protein-coding genes, 29 transfer RNA genes, and four ribosomal RNA genes. Rps19 and ycf1 were pseudogenized due to incomplete duplication in IR regions. The nucleotide composition is asymmetric (30.5% A, 19.4% C, 18.7% G, and 31.3% T) with an overall G + C content of 38.2%. The phylogeny of Ranunculaceae based on 75 CDSs of 27 taxa showed that Ranunculoideae is paraphyletic and thus needs redefinition.