Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
MethodsX ; 13: 102920, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39252999

RESUMEN

Antibiotics are currently recognized as environmental pollutants. In this work, the methods involved in the degradation of a ß-lactam antibiotic (i.e., DXC) by treatments based on inorganic peroxides and UVC (e.g., UVC alone, UV-C/H2O2, UVC/peroxymonosulfate, and UVC/peroxydisulfate) are presented. The methodology of computational calculations to obtain frontier orbitals and Fukui indices for DXC, and elucidate the reactive moieties on the target substance is also shown. Finally, the direct oxidation by peroxides and UV-C/H2O2 action to treat DXC in simulated pharmaceutical wastewater are depicted. The chromatographic and theoretical analyses allowed for determining the degrading performance of inorganic peroxides and UVC-based treatments toward the target pollutant in aqueous samples.•Treatments based on inorganic peroxides and UVC as useful methods for degrading the ß-lactam antibiotic dicloxacillin.•Persulfates and UV-C/H2O2 showed high degrading action on the target pharmaceutical.•Methodologies based on theoretical calculations for the identification of reactive moieties on the DXC susceptible to radical attacks are presented.

2.
Environ Monit Assess ; 195(12): 1552, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38032365

RESUMEN

This paper presents the main results of the removal of two pharmaceutical and personal care products (PPCPs), bisphenol A (BPA) and sildenafil (SDF), by applying anaerobic biological batch tests. The biomass used was previously acclimatized and the experiment lasted 28 days. The effect of factors such as compound (BPA and SDF), concentration and type of inoculum was assessed, considering the factorial experimental design. The results indicated that evaluated factors did not significantly affect the PPCPs elimination in the evaluated range with a confidence level of 95%. On the other hand, the removal percentages obtained with BPA were mainly related to mechanisms, such as sorption and abiotic reactions. Regarding SDF, biodegradation was the predominant mechanism of removal under the experimental conditions of this study; however, the degradation of SDF was partial, with percentages lower than 43% in the tests with hydrolytic/acidogenic inoculum (H/A) and lower than 41% in the tests with methanogenic inoculum (MET). Finally, these findings indicated that hydrolysis/acidogenesis phase is a main contributor to SDF biodegradation in anaerobic digestion. The study provides a starting point for future research that seeks to improve treatment systems to optimize the removal of pollutants from different water sources.


Asunto(s)
Monitoreo del Ambiente , Citrato de Sildenafil , Anaerobiosis , Hidrólisis
3.
Data Brief ; 29: 105158, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32025544

RESUMEN

Sulfonamide-class antibiotics are recognized as water pollutants, which have negative environmental impacts. A strategy to deal with sulfonamides is throughout the application of oxidation processes. This work presents the treatment of the sulfacetamide (SAM) antibiotic by electrochemical oxidation, UV-C/H2O2 and photo-Fenton process. It was established the main degradation routes during each process action. A DFT computational analysis for SAM structure was done and mass spectra of primary transformation products were determined. Chemical oxygen demand (COD), total organic carbon (TOC) and biochemical oxygen demand (BOD5) were also followed. Additionally, SAM treatment in simulated seawater and hospital wastewater was measured. These data can be useful for comparative purposes about degradation of sulfonamide-class antibiotics by electrochemical and advanced oxidation processes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...