Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Elife ; 122023 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-37523218

RESUMEN

Motor variability is a fundamental feature of developing systems allowing motor exploration and learning. In human infants, leg movements involve a small number of basic coordination patterns called locomotor primitives, but whether and when motor variability could emerge from these primitives remains unknown. Here we longitudinally followed 18 infants on 2-3 time points between birth (~4 days old) and walking onset (~14 months old) and recorded the activity of their leg muscles during locomotor or rhythmic movements. Using unsupervised machine learning, we show that the structure of trial-to-trial variability changes during early development. In the neonatal period, infants own a minimal number of motor primitives but generate a maximal motor variability across trials thanks to variable activations of these primitives. A few months later, toddlers generate significantly less variability despite the existence of more primitives due to more regularity within their activation. These results suggest that human neonates initiate motor exploration as soon as birth by variably activating a few basic locomotor primitives that later fraction and become more consistently activated by the motor system.


Human babies start to walk on their own when they are about one year old, but before that, they can move their legs to produce movements called 'stepping', where they take steps when held over a surface; and kicking, where they kick in the air when lying on their backs. These two behaviors are known as 'locomotor precursors' and can be observed from birth. Previous studies suggest that infants produce these movements by activating a small number of motor primitives, different modules in the nervous system ­ each activating a combination of muscles to produce a movement. However, babies and toddlers exhibit a lot of variability when they move, which is a hallmark of typical development that furthers exploring and learning. So far, it has been unclear whether such differences arise as soon as babies are born and if so, how a small number of motor primitives could result in this variability. Hinnekens et al. hypothesized that the great variety of movements in infants can be generated from a small set of motor primitives, when several cycles of flexing and extending the legs are considered. To test their hypothesis, the researchers first needed to establish how and when infants generate this variability of movement. To do so, they used electromyography to record the leg muscle activity of 18 babies during either movement resulting in a body displacement (locomotor movement) or rhythmic movement. These measurements were taken at either two or three timepoints between birth and the onset of walking. Next, the scientists used a state-of-the-art machine learning approach to model the neural basis underlying these recordings, which showed that newborns generate a lot of movement variability, but they do so by activating a small number of motor primitives, which they can combine in different ways. Hinnekens et al. also show that as babies get older, the number of motor primitives increases while the variety of movements decreases due to a more steady activation of each motor primitive. Cerebral plasticity is maximal during the first year of life, and infants can regularly learn new motor skills, each leading to the ability to perform more movements. Motor variability is believed to play an important role in this learning process and is known to be decreased in atypical development. As such, examining motor variability may be a promising tool to identify neurodevelopmental delays at younger ages.


Asunto(s)
Movimiento , Parto , Recién Nacido , Embarazo , Femenino , Humanos , Lactante , Aprendizaje Automático no Supervisado , Caminata
2.
Front Pediatr ; 11: 1198016, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37346892

RESUMEN

Aim: To examine the effects of an early home-based 8-week crawling intervention performed by trained therapists on the motor and general development of very premature infants during the first year of life. Methods: At term-equivalent age, immediately following discharge from the Neonatal Intensive Care Unit (NICU), we randomly allocated 44 premature infants born before 32 weeks' gestation without major brain damage to one of three conditions in our intervention study: crawling on a mini-skateboard, the Crawliskate (Crawli), prone positioning control (Mattress), or standard care (Control). The Crawli and Mattress groups received 5 min daily at-home training administered by trained therapists for 8 consecutive weeks upon discharge from the NICU. The outcomes of greatest interest included gross motor development (Bayley-III) at 2, 6, 9, and 12 months (primary outcome) corrected age (CA), mature crawling at 9 months CA and general development at 9 and 12 months CA [Ages and Stages Questionnaires-3 (ASQ-3)]. The study was registered at www.clinicaltrials.gov; registration number: NCT05278286. Results: A 3 (Condition) × 4 (Age) repeated measures ANOVA revealed that Crawli group infants had significantly higher Bayley-III gross motor development scores than Mattress and Control group infants. Crawli group infants also scored significantly higher on groups of Bayley-III items related to specific motor skills than infants in the other groups, including crawling at 9 months CA. We found significant differences in favor of the Crawli group in separate one-way ANOVAs at each of the ages we examined. A 3 (Condition) × 2 (Age) repeated measures ANOVA revealed that the Crawli group scored significantly higher than the Control group for the ASQ-3 total score and communication score and significantly higher for the fine motor score than the Control and Mattress groups. We found additional significant differences in favor of the Crawli group for other dimensions of the ASQ-3 in separate one-way ANOVAs at 9 and 12 months CA. Interpretation: Early crawling training on a Crawliskate provides an effective way to promote motor and general development in very premature infants. The findings also provide clear evidence for a link between newborn crawling and more mature crawling later in development.

3.
Front Neural Circuits ; 17: 1340298, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38343616

RESUMEN

Introduction: Walking in adults relies on a small number of modules, reducing the number of degrees of freedom that needs to be regulated by the central nervous system (CNS). While walking in toddlers seems to also involve a small number of modules when considering averaged or single-step data, toddlers produce a high amount of variability across strides, and the extent to which this variability interacts with modularity remains unclear. Methods: Electromyographic activity from 10 bilateral lower limb muscles was recorded in both adults (n = 12) and toddlers (n = 12) over 8 gait cycles. Toddlers were recorded while walking independently and while being supported by an adult. This condition was implemented to assess if motor variability persisted with reduced balance constraints, suggesting a potential central origin rather than reliance on peripheral regulations. We used non-negative matrix factorization to model the underlying modular command with the Space-by-Time Decomposition method, with or without averaging data, and compared the modular organization of toddlers and adults during multiple walking strides. Results: Toddlers were more variable in both conditions (i.e. independent walking and supported by an adult) and required significantly more modules to account for their greater stride-by-stride variability. Activations of these modules varied more across strides and were less parsimonious compared to adults, even with diminished balance constraints. Discussion: The findings suggest that modular control of locomotion evolves between toddlerhood and adulthood as the organism develops and practices. Adults seem to be able to generate several strides of walking with less modules than toddlers. The persistence of variability in toddlers when balance constraints were lowered suggests a link with the ability to explore rather than with corrective mechanisms. In conclusion, the capacity of new walkers to flexibly activate their motor command suggests a broader range of possible actions, though distinguishing between modular and non-modular inputs remains challenging.


Asunto(s)
Marcha , Caminata , Adulto , Humanos , Caminata/fisiología , Marcha/fisiología , Locomoción/fisiología , Sistema Nervioso Central , Algoritmos , Músculo Esquelético/fisiología , Electromiografía
4.
J Neurophysiol ; 123(2): 496-510, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31825715

RESUMEN

Motor behaviors are often hypothesized to be set up from the combination of a small number of modules encoded in the central nervous system. These modules are thought to combine such that a variety of motor tasks can be realized, from reproducible tasks such as walking to more unusual locomotor tasks that typically exhibit more step-by-step variability. We investigated the impact of step-by-step variability on the modular architecture of unusual tasks compared with walking. To this aim, 20 adults had to perform walking and two unusual modes of locomotion inspired by developmental milestones (cruising and crawling). Sixteen surface electromyography (EMG) signals were recorded to extract both spatial and temporal modules. Modules were extracted from both averaged and nonaveraged (i.e., single step) EMG signals to assess the significance of step-to-step variability when participants practiced such unusual locomotor tasks. The number of modules extracted from averaged data was similar across tasks, but a higher number of modules was required to reconstruct nonaveraged EMG data of the unusual tasks. Although certain walking modules were shared with cruising and crawling, task-specific modules were necessary to account for the muscle patterns underlying these unusual locomotion modes. These results highlight a more complex modularity (e.g., more modules) for cruising and crawling compared with walking, which was only apparent when the step-to-step variability of EMG patterns was considered. This suggests that considering nonaveraged data is relevant when muscle modularity is studied, especially in motor tasks with high variability as in motor development.NEW & NOTEWORTHY This study addresses the general question of modularity in locomotor control. We demonstrate for the first time the importance of intraindividual variability in the muscle modularity of unusual locomotor behaviors that exhibit greater step-by-step variability than standard walking. Crawling and cruising, the unusual locomotor modes considered, are based on a more complex modular organization than walking. More spatial and temporal modules, task specific or shared with walking modules, are needed to reconstruct muscle patterns.


Asunto(s)
Locomoción/fisiología , Actividad Motora/fisiología , Músculo Esquelético/fisiología , Adulto , Electromiografía , Femenino , Humanos , Masculino , Caminata/fisiología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA