Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-37174189

RESUMEN

Naturally occurring radon and its short lived progeny are the second leading cause of lung cancer after smoking, and the main risk factor for non-smokers. The radon progeny, mainly Polonium-218 (218Po) and Polonium-214 (214Po), are responsible for the highest dose deposition in the bronchial epithelium via alpha-decay. These alpha-particles release a large amount of energy over a short penetration range, which results in severe and complex DNA damage. In order to unravel the underlying biological mechanisms which are triggered by this complex DNA damage and eventually give rise to carcinogenesis, in vitro radiobiology experiments on mammalian cells have been performed using radon exposure setups, or radon analogues, which mimic alpha-particle exposure. This review provides an overview of the different experimental setups, which have been developed and used over the past decades for in vitro radon experiments. In order to guarantee reliable results, the design and dosimetry of these setups require careful consideration, which will be emphasized in this work. Results of these in vitro experiments, particularly on bronchial epithelial cells, can provide valuable information on biomarkers, which can assist to identify exposures, as well as to study the effects of localized high dose depositions and the heterogeneous dose distribution of radon.


Asunto(s)
Contaminantes Radiactivos del Aire , Radón , Animales , Radón/toxicidad , Hijas del Radón/análisis , Radiometría , Fumar , Mamíferos
2.
Artículo en Inglés | MEDLINE | ID: mdl-36767140

RESUMEN

Radon, a naturally occurring radioactive noble gas, contributes significantly to lung cancer when incorporated from our natural environment. However, despite having unknown underlying mechanisms, radon is also used for therapeutic purposes to treat inflammatory diseases such as rheumatoid arthritis. Data on the distribution and accumulation of radon in different tissues represent an important factor in dose determination for risk estimation, the explanation of potential therapeutic effects and the calculation of doses to different tissues using biokinetic dosimetry models. In this paper, radon's solubility in bones, muscle tissue, adipose tissue, bone marrow, blood, a dissolved gelatin and oleic acid were determined. In analogy to current radon use in therapies, samples were exposed to radon gas for 1 h using two exposure protocols combined with established γ-spectroscopic measurements. Solubility data varied over two orders of magnitude, with the lowest values from the dissolved gelatin and muscle tissue; radon's solubility in flat bones, blood and adipose tissue was one order of magnitude higher. The highest values for radon solubility were measured in bone marrow and oleic acid. The data for long bones as well as bone marrow varied significantly. The radon solubility in the blood suggested a radon distribution within the body that occurred via blood flow, reaching organs and tissues that were not in direct contact with radon gas during therapy. Tissues with similar compositions were expected to reveal similar radon solubilities; however, yellow bone marrow and adipose tissue showed differences in solubility even though their chemical composition is nearly the same-indicating that interactions on the microscopic scale between radon and the solvent might be important. We found high solubility in bone marrow-where sensitive hematopoietic cells are located-and in adipose tissue, where the biological impact needs to be further elucidated.


Asunto(s)
Contaminantes Radiactivos del Aire , Radón , Radón/análisis , Solubilidad , Gelatina , Ácido Oléico , Contaminantes Radiactivos del Aire/análisis , Gases
3.
Artículo en Inglés | MEDLINE | ID: mdl-36141609

RESUMEN

The radioactive noble gas radon and its short-living progeny are inhaled during respiration, depositing their decay energies in the lungs. These progeny are considered responsible for more than 95% of the total effective dose and are, together with radon, classified as carcinogenic for lung cancer. Consequently, filtration of the progeny could reduce the dose to the lungs. In our study, we investigated the filtration properties of FFP2 versus surgical masks (II R) for radon and its decay products. The masks were attached to a measurement device, which enabled determination of the size distribution of radon progeny, ranging from unattached to clustered progeny. In parallel, it measured the radon activity concentration during experiments. By comparing background measurements without mask and experiments with masks, the percentage of retained unattached radon progeny was determined for FFP2 (98.8 ± 0.6%) and II R masks (98.4 ± 0.7%). For clustered progeny, the retained fraction was 85.2 ± 18.1% for FFP2 and 79.5 ± 22.1% for II R masks while radon was not filtered. We can show that masks are effective in filtering radon progeny and thus are capable of reducing the total effective dose to the lungs.


Asunto(s)
Contaminantes Radiactivos del Aire , Contaminación del Aire Interior , Monitoreo de Radiación , Radón , Adsorción , Contaminantes Radiactivos del Aire/análisis , Contaminación del Aire Interior/análisis , Filtración , Radón/análisis , Hijas del Radón/análisis
4.
Cells ; 11(4)2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-35203348

RESUMEN

Radon treatment is used as an established therapy option in chronic painful inflammatory diseases. While analgesic effects are well described, little is known about the underlying molecular effects. Among the suspected mechanisms are modulations of the anti-oxidative and the immune system. Therefore, we aimed for the first time to examine the beneficial effects of radon exposure on clinical outcome as well as the underlying mechanisms by utilizing a holistic approach in a controlled environment of a radon chamber with an animal model: K/BxN serum-induced arthritic mice as well as isolated cells were exposed to sham or radon irradiation. The effects on the anti-oxidative and the immune system were analyzed by flow-cytometry, qPCR or ELISA. We found a significantly improved clinical disease progression score in the mice, alongside significant increase of peripheral blood B cells and IL-5. No significant alterations were visible in the anti-oxidative system or regarding cell death. We conclude that neither cell death nor anti-oxidative systems are responsible for the beneficial effects of radon exposure in our preclinical model. Rather, radon slightly affects the immune system. However, more research is still needed in order to fully understand radon-mediated effects and to carry out reasonable risk-benefit considerations.


Asunto(s)
Artritis Reumatoide , Radón , Animales , Artritis Reumatoide/metabolismo , Modelos Animales de Enfermedad , Sistema Inmunológico/metabolismo , Interleucina-5 , Ratones , Radón/uso terapéutico
5.
Sci Rep ; 9(1): 10768, 2019 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-31341228

RESUMEN

Radon is a radioactive noble gas that can enter the human body, thus increasing the risk of lung cancer. But it is also used for treatment of various ailments, most notably rheumatoid arthritis. The accumulation of radon differs between tissues, with particularly high concentrations in fat tissue. To understand the underlying mechanisms, a combination of γ-spectroscopy and molecular dynamics simulations were performed, to study the accumulation of radon gas in contact with several liquids (water, fatty acids). The solubilities, specific for a defined radon activity concentration, are in good agreement and differ by two orders of magnitude between water and fat, caused by radon disrupting the hydrogen bond network of water. In contrast, the energy cost of introducing radon atoms into fat is low due to the dispersive interaction between radon and fat, which is a non-polar solvent. This correlation was also explicitly demonstrated in our simulations by changing the polarization of the solvent.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...