Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PNAS Nexus ; 2(1): pgac297, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36712931

RESUMEN

Alopecia areata is a chronic hair loss disorder that involves autoimmune disruption of hair follicles by CD8+  T cells. Most patients present with patchy hair loss on the scalp that improves spontaneously or with topical and intralesional steroids, topical minoxidil, or topical immunotherapy. However, recurrence of hair loss is common, and patients with extensive disease may require treatment with oral corticosteroids or oral Janus kinase (JAK) inhibitors, both of which may cause systemic toxicities with long-term use. Itaconate is an endogenous molecule synthesized in macrophages that exerts anti-inflammatory effects. To investigate the use of itaconate derivatives for treating alopecia areata, we designed a prodrug of 4-methyl itaconate (4-MI), termed SCD-153, with increased lipophilicity compared to 4-MI (CLogP 1.159 vs. 0.1442) to enhance skin and cell penetration. Topical SCD-153 formed 4-MI upon penetrating the stratum corneum in C57BL/6 mice and showed low systemic absorption. When added to human epidermal keratinocytes stimulated with polyinosinic-polycytidylic acid (poly I:C) or interferon (IFN)γ, SCD-153 significantly attenuated poly I:C-induced interleukin (IL)-6, Toll-like receptor 3, IL-1ß, and IFNß expression, as well as IFNγ-induced IL-6 expression. Topical application of SCD-153 to C57BL/6 mice in the resting (telogen) phase of the hair cycle induced significant hair growth that was statistically superior to vehicle (dimethyl sulfoxide), the less cell-permeable itaconate analogues 4-MI and dimethyl itaconate, and the JAK inhibitor tofacitinib. Our results suggest that SCD-153 is a promising topical candidate for treating alopecia areata.

2.
Life Sci ; 258: 118155, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32735887

RESUMEN

AIMS: Aim of the present study was to investigate the effect of co-administration coenzyme Q10 and pioglitazone on the mRNA expression of adipocytokines in white adipose tissues of chemically induced type 2 diabetes mellitus in rats. MAIN METHODS: Diabetes was induced by administration of streptozotocin (65 mg/kg, i.p.), followed by nicotinamide (110 mg/kg, i.p.) 15 min later. The diabetic rats were treated coenzyme Q10 (Q10, 10 mg/kg, p.o.) or pioglitazone (PIO, 20 mg/kg, p.o.) alone and their combination for four weeks. Biochemical parameters like FBS level, insulin and HbA1c along with tissue levels of MDA, SOD, CAT and GSH were estimated. The mRNA levels of ADIPOQ, RBP4, RETN, IL-6 and TNF-α in White Adipose Tissue (WAT) were measured. KEY FINDINGS: Treatment with Q10 + PIO showed a significant reduction in the levels of FBS, HbA1c and a significant increase in insulin levels as compared to normal control group. Additionally, there was a significant change in the levels of biomarkers of oxidative stress after treatment with Q10 + PIO as compared to streptozotocin-nicotinamide group. Treatment with Q10 + PIO also significantly altered the mRNA expression of ADIPOQ, RETN, IL-6 and TNF-α when compared to monotherapy. However, mRNA expression of RBP4 did not alter in Q10 + PIO treated animal as compared to Q10 or PIO alone. SIGNIFICANCE: It is concluded that co-administration of Q10 and PIO has been shown the better therapeutic effect on the mRNA expression of adipocytokines and oxidative stress parameters as compared to either Q10 or PIO.


Asunto(s)
Adipoquinas/genética , Diabetes Mellitus Experimental/tratamiento farmacológico , Hipoglucemiantes/uso terapéutico , Pioglitazona/uso terapéutico , Ubiquinona/análogos & derivados , Vitaminas/uso terapéutico , Animales , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/genética , Sinergismo Farmacológico , Expresión Génica/efectos de los fármacos , Hipoglucemiantes/farmacología , Masculino , Pioglitazona/farmacología , ARN Mensajero/genética , Ratas , Ratas Wistar , Ubiquinona/farmacología , Ubiquinona/uso terapéutico , Vitaminas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...