Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 182
Filtrar
1.
Acta Neuropathol ; 145(4): 409-438, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36773106

RESUMEN

Alzheimer's disease (AD) pathologies were discovered in the accessible neurosensory retina. However, their exact nature and topographical distribution, particularly in the early stages of functional impairment, and how they relate to disease progression in the brain remain largely unknown. To better understand the pathological features of AD in the retina, we conducted an extensive histopathological and biochemical investigation of postmortem retina and brain tissues from 86 human donors. Quantitative examination of superior and inferior temporal retinas from mild cognitive impairment (MCI) and AD patients compared to those with normal cognition (NC) revealed significant increases in amyloid ß-protein (Aß42) forms and novel intraneuronal Aß oligomers (AßOi), which were closely associated with exacerbated retinal macrogliosis, microgliosis, and tissue atrophy. These pathologies were unevenly distributed across retinal layers and geometrical areas, with the inner layers and peripheral subregions exhibiting most pronounced accumulations in the MCI and AD versus NC retinas. While microgliosis was increased in the retina of these patients, the proportion of microglial cells engaging in Aß uptake was reduced. Female AD patients exhibited higher levels of retinal microgliosis than males. Notably, retinal Aß42, S100 calcium-binding protein B+ macrogliosis, and atrophy correlated with severity of brain Aß pathology, tauopathy, and atrophy, and most retinal pathologies reflected Braak staging. All retinal biomarkers correlated with the cognitive scores, with retinal Aß42, far-peripheral AßOi and microgliosis displaying the strongest correlations. Proteomic analysis of AD retinas revealed activation of specific inflammatory and neurodegenerative processes and inhibition of oxidative phosphorylation/mitochondrial, and photoreceptor-related pathways. This study identifies and maps retinopathy in MCI and AD patients, demonstrating the quantitative relationship with brain pathology and cognition, and may lead to reliable retinal biomarkers for noninvasive retinal screening and monitoring of AD.


Asunto(s)
Enfermedad de Alzheimer , Masculino , Humanos , Femenino , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Proteoma/metabolismo , Proteómica , Retina/patología , Atrofia/patología , Biomarcadores/metabolismo
2.
J Vis Exp ; (190)2022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36533846

RESUMEN

Retinal degeneration, such as age-related macular degeneration (AMD), is a leading cause of blindness worldwide. A myriad of approaches have been undertaken to develop regenerative medicine-based therapies for AMD, including stem cell-based therapies. Rodents as animal models for retinal degeneration are a foundation for translational research, due to the broad spectrum of strains that develop retinal degeneration diseases at different stages. However, mimicking human therapeutic delivery of subretinal implants in rodents is challenging, due to anatomical differences such as lens size and vitreous volume. This surgical protocol aims to provide a guided method for transplanting implants into the subretinal space in rats. A user-friendly comprehensive description of the critical steps has been included. This protocol has been developed as a cost-efficient surgical procedure for reproducibility across different preclinical studies in rats. Proper miniaturization of a human-sized implant is required prior to conducting the surgical experiment, which includes adjustments to the dimensions of the implant. An external approach is used instead of an intravitreal procedure to deliver the implant to the subretinal space. Using a small sharp needle, a scleral incision is performed in the temporal superior quadrant, followed by paracentesis to reduce intraocular pressure, thereby minimizing resistance during the surgical implantation. Next, a balanced salt solution (BSS) injection through the incision is carried out to achieve focal retinal detachment (RD). Lastly, insertion and visualization of the implant into the subretinal space are conducted. Post-operative assessment of the subretinal placement of the implant includes imaging by spectral domain optical coherence tomography (SD-OCT). Imaging follow-ups ascertain the subretinal stability of the implant, before the eyes are harvested and fixated for histological analysis.


Asunto(s)
Degeneración Macular , Degeneración Retiniana , Humanos , Ratas , Animales , Degeneración Retiniana/cirugía , Degeneración Retiniana/patología , Reproducibilidad de los Resultados , Modelos Animales de Enfermedad , Degeneración Macular/terapia , Tomografía de Coherencia Óptica/métodos
3.
Stem Cell Reports ; 17(3): 448-458, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35120620

RESUMEN

Cell-based therapies face challenges, including poor cell survival, immune rejection, and integration into pathologic tissue. We conducted an open-label phase 1/2a clinical trial to assess the safety and preliminary efficacy of a subretinal implant consisting of a polarized monolayer of allogeneic human embryonic stem cell-derived retinal pigmented epithelium (RPE) cells in subjects with geographic atrophy (GA) secondary to dry age-related macular degeneration. Postmortem histology from one subject with very advanced disease shows the presence of donor RPE cells 2 years after implantation by immunoreactivity for RPE65 and donor-specific human leukocyte antigen (HLA) class I molecules. Markers of RPE cell polarity and phagocytosis suggest donor RPE function. Further histologic examination demonstrated CD34+ structures beneath the implant and CD4+, CD68+, and FoxP3+ cells in the tissue. Despite significant donor-host HLA mismatch, no clinical signs of retinitis, vitreitis, vasculitis, choroiditis, or serologic immune response were detected in the deceased subject or any other subject in the study. Subretinally implanted, HLA-mismatched donor RPE cells survive, express functional markers, and do not elicit clinically detectable intraocular inflammation or serologic immune responses even without long-term immunosuppression.


Asunto(s)
Atrofia Geográfica , Degeneración Macular , Prótesis e Implantes , Atrofia Geográfica/terapia , Células Madre Embrionarias Humanas/patología , Humanos , Degeneración Macular/patología , Degeneración Macular/terapia , Prótesis e Implantes/efectos adversos , Epitelio Pigmentado de la Retina/patología
4.
Exp Eye Res ; 215: 108918, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34986369

RESUMEN

Oxidative stress in the retinal pigment epithelium (RPE) can cause mitochondrial dysfunction and is likely a causative factor in the pathogenesis of age-related macular degeneration (AMD). Under oxidative stress conditions, some of the RPE cells become senescent and a contributory role for RPE senescence in AMD pathology has been proposed. The purpose of this study is to 1) characterize senescence in human RPE; 2) investigate the effect of an αB Crystallin chaperone peptide (mini Cry) in controlling senescence, in particular by regulating mitochondrial function and senescence-associated secretory phenotype (SASP) production and 3) develop mouse models for studying the role of RPE senescence in dry and nAMD. Senescence was induced in human RPE cells in two ways. First, subconfluent cells were treated with 0.2 µg/ml doxorubicin (DOX); second, subconfluent cells were treated with 500 µM H2O2. Senescence biomarkers (senescence-associated beta-galactosidase (SA-ßgal), p21, p16) and mitochondrial proteins (Fis1, DRP1, MFN2, PGC1-α, mtTFA) were analyzed in control and experimental groups. The effect of mini Cry on mitochondrial bioenergetics, glycolysis and SASP was determined. In vivo, retinal degeneration was induced by intravenous injection of NaIO3 (20 mg/kg) and subretinal fibrosis by laser-induced choroidal neovascularization. Increased SA-ßgal staining and p16 and p21 expression was observed after DOX- or H2O2-induced senescence and mini Cry significantly decreased senescence-positive cells. The expression of mitochondrial biogenesis proteins PGC-1 and mTFA increased with senescence, and mini Cry reduced expression significantly. Senescent RPE cells were metabolically active, as evidenced by significantly enhanced oxidative phosphorylation and anaerobic glycolysis, mini Cry markedly reduced rates of respiration and glycolysis. Senescent RPE cells maintain a proinflammatory phenotype characterized by significantly increased production of cytokines (IFN-Ë , TNF-α, IL1-α IL1-ß, IL-6, IL-8, IL-10), and VEGF-A; mini Cry significantly inhibited their secretion. We identified and localized senescent RPE cells for the first time in NaIO3-induced retinal degeneration and laser-induced subretinal fibrosis mouse models. We conclude that mini Cry significantly impairs stress-induced senescence by modulating mitochondrial biogenesis and fission proteins in RPE cells. Characterization of senescence could provide further understanding of the metabolic changes that accompany the senescent phenotype in ocular disease. Future studies in vivo may better define the role of senescence in AMD and the therapeutic potential of mini Cry as a senotherapeutic.


Asunto(s)
Degeneración Macular , Degeneración Retiniana , Animales , Senescencia Celular , Modelos Animales de Enfermedad , Fibrosis , Peróxido de Hidrógeno/farmacología , Degeneración Macular/metabolismo , Ratones , Estrés Oxidativo , Péptidos/farmacología , Degeneración Retiniana/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Cadena B de alfa-Cristalina/genética
5.
Sci Immunol ; 6(66): eabi4493, 2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34860583

RESUMEN

Detection of microbial products by multiprotein complexes known as inflammasomes is pivotal to host defense against pathogens. Nucleotide-binding domain leucine-rich repeat (NLR) CARD domain containing 4 (NLRC4) forms an inflammasome in response to bacterial products; this requires their detection by NLR family apoptosis inhibitory proteins (NAIPs), with which NLRC4 physically associates. However, the mechanisms underlying sterile NLRC4 inflammasome activation, which is implicated in chronic noninfectious diseases, remain unknown. Here, we report that endogenous short interspersed nuclear element (SINE) RNAs, which promote atrophic macular degeneration (AMD) and systemic lupus erythematosus (SLE), induce NLRC4 inflammasome activation independent of NAIPs. We identify DDX17, a DExD/H box RNA helicase, as the sensor of SINE RNAs that licenses assembly of an inflammasome comprising NLRC4, NLR pyrin domain­containing protein 3, and apoptosis-associated speck-like protein­containing CARD and induces caspase-1 activation and cytokine release. Inhibiting DDX17-mediated NLRC4 inflammasome activation decreased interleukin-18 release in peripheral blood mononuclear cells of patients with SLE and prevented retinal degeneration in an animal model of AMD. Our findings uncover a previously unrecognized noncanonical NLRC4 inflammasome activated by endogenous retrotransposons and provide potential therapeutic targets for SINE RNA­driven diseases.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/inmunología , Proteínas de Unión al Calcio/inmunología , ARN Helicasas DEAD-box/inmunología , Inflamasomas/inmunología , ARN/inmunología , Retroelementos/inmunología , Animales , Proteínas Reguladoras de la Apoptosis/deficiencia , Proteínas de Unión al Calcio/deficiencia , Células Cultivadas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
6.
Cells ; 10(11)2021 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-34831174

RESUMEN

Retinal pigment epithelium (RPE) replacement therapy is evolving as a feasible approach to treat age-related macular degeneration (AMD). In many preclinical studies, RPE cells are transplanted as a cell suspension into immunosuppressed animal eyes and transplant effects have been monitored only short-term. We investigated the long-term effects of human Induced pluripotent stem-cell-derived RPE (iPSC-RPE) transplants in an immunodeficient Royal College of Surgeons (RCS) rat model, in which RPE dysfunction led to photoreceptor degeneration. iPSC-RPE cultured as a polarized monolayer on a nanoengineered ultrathin parylene C scaffold was transplanted into the subretinal space of 28-day-old immunodeficient RCS rat pups and evaluated after 1, 4, and 11 months. Assessment at early time points showed good iPSC-RPE survival. The transplants remained as a monolayer, expressed RPE-specific markers, performed phagocytic function, and contributed to vision preservation. At 11-months post-implantation, RPE survival was observed in only 50% of the eyes that were concomitant with vision preservation. Loss of RPE monolayer characteristics at the 11-month time point was associated with peri-membrane fibrosis, immune reaction through the activation of macrophages (CD 68 expression), and the transition of cell fate (expression of mesenchymal markers). The overall study outcome supports the therapeutic potential of RPE grafts despite the loss of some transplant benefits during long-term observations.


Asunto(s)
Células Madre Pluripotentes Inducidas/trasplante , Epitelio Pigmentado de la Retina/trasplante , Animales , Biomarcadores/metabolismo , Humanos , Implantes Experimentales , Luz , Polímeros , Ratas , Colículos Superiores/efectos de la radiación , Análisis de Supervivencia , Visión Ocular/efectos de la radiación , Xilenos
7.
Transl Vis Sci Technol ; 10(10): 13, 2021 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-34613357

RESUMEN

Purpose: To report 1-year follow-up of a phase 1/2a clinical trial testing a composite subretinal implant having polarized human embryonic stem cell (hESC)-derived retinal pigment epithelium (RPE) cells on an ultrathin parylene substrate in subjects with advanced non-neovascular age-related macular degeneration (NNAMD). Methods: The phase 1/2a clinical trial included 16 subjects in two cohorts. The main endpoint was safety assessed at 365 days using ophthalmic and systemic exams. Pseudophakic subjects with geographic atrophy (GA) and severe vision loss were eligible. Low-dose tacrolimus immunosuppression was utilized for 68 days in the peri-implantation period. The implant was delivered to the worst seeing eye with a custom subretinal insertion device in an outpatient setting. A data safety monitoring committee reviewed all results. Results: The treated eyes of all subjects were legally blind with a baseline best-corrected visual acuity (BCVA) of ≤ 20/200. There were no unexpected serious adverse events. Four subjects in cohort 1 had serious ocular adverse events, including retinal hemorrhage, edema, focal retinal detachment, or RPE detachment, which was mitigated in cohort 2 using improved hemostasis during surgery. Although this study was not powered to assess efficacy, treated eyes from four subjects showed an increased BCVA of >5 letters (6-13 letters). A larger proportion of treated eyes experienced a >5-letter gain when compared with the untreated eye (27% vs. 7%; P = not significant) and a larger proportion of nonimplanted eyes demonstrated a >5-letter loss (47% vs. 33%; P = not significant). Conclusions: Outpatient delivery of the implant can be performed routinely. At 1 year, the implant is safe and well tolerated in subjects with advanced dry AMD. Translational Relevance: This work describes the first clinical trial, to our knowledge, of a novel implant for advanced dry AMD.


Asunto(s)
Atrofia Geográfica , Trasplante de Células Madre Hematopoyéticas , Degeneración Macular , Estudios de Seguimiento , Atrofia Geográfica/terapia , Humanos , Degeneración Macular/terapia , Agudeza Visual
8.
Sci Adv ; 7(40): eabj3658, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34586848

RESUMEN

Long interspersed nuclear element-1 (L1)­mediated reverse transcription (RT) of Alu RNA into cytoplasmic Alu complementary DNA (cDNA) has been implicated in retinal pigmented epithelium (RPE) degeneration. The mechanism of Alu cDNA­induced cytotoxicity and its relevance to human disease are unknown. Here we report that Alu cDNA is highly enriched in the RPE of human eyes with geographic atrophy, an untreatable form of age-related macular degeneration. We demonstrate that the DNA sensor cGAS engages Alu cDNA to induce cytosolic mitochondrial DNA escape, which amplifies cGAS activation, triggering RPE degeneration via the inflammasome. The L1-extinct rice rat was resistant to Alu RNA­induced Alu cDNA synthesis and RPE degeneration, which were enabled upon L1-RT overexpression. Nucleoside RT inhibitors (NRTIs), which inhibit both L1-RT and inflammasome activity, and NRTI derivatives (Kamuvudines) that inhibit inflammasome, but not RT, both block Alu cDNA toxicity, identifying inflammasome activation as the terminal effector of RPE degeneration.

9.
Sci Rep ; 11(1): 6286, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33737600

RESUMEN

Age-related macular degeneration (AMD) is the primary cause of blindness in adults over 60 years of age, and clinical trials are currently assessing the therapeutic potential of retinal pigmented epithelial (RPE) cell monolayers on implantable scaffolds to treat this disease. However, challenges related to the culture, long-term storage, and long-distance transport of such implants currently limit the widespread use of adherent RPE cells as therapeutics. Here we report a xeno-free protocol to cryopreserve a confluent monolayer of clinical-grade, human embryonic stem cell-derived RPE cells on a parylene scaffold (REPS) that yields viable, polarized, and functional RPE cells post-thaw. Thawed cells exhibit ≥ 95% viability, have morphology, pigmentation, and gene expression characteristic of mature RPE cells, and secrete the neuroprotective protein, pigment epithelium-derived factor (PEDF). Stability under liquid nitrogen (LN2) storage has been confirmed through one year. REPS were administered immediately post-thaw into the subretinal space of a mammalian model, the Royal College of Surgeons (RCS)/nude rat. Implanted REPS were assessed at 30, 60, and 90 days post-implantation, and thawed cells demonstrate survival as an intact monolayer on the parylene scaffold. Furthermore, immunoreactivity for the maturation marker, RPE65, significantly increased over the post-implantation period in vivo, and cells demonstrated functional attributes similar to non-cryopreserved controls. The capacity to cryopreserve adherent cellular therapeutics permits extended storage and stable transport to surgical sites, enabling broad distribution for the treatment of prevalent diseases such as AMD.


Asunto(s)
Criopreservación/métodos , Células Epiteliales/trasplante , Degeneración Macular/terapia , Epitelio Pigmentado de la Retina/trasplante , Manejo de Especímenes/métodos , Trasplante de Células Madre/métodos , Animales , Diferenciación Celular , Línea Celular , Supervivencia Celular , Modelos Animales de Enfermedad , Células Epiteliales/citología , Células Epiteliales/metabolismo , Proteínas del Ojo/metabolismo , Células Madre Embrionarias Humanas/citología , Humanos , Factores de Crecimiento Nervioso/metabolismo , Polímeros , Ratas , Ratas Desnudas , Medicina Regenerativa/métodos , Epitelio Pigmentado de la Retina/citología , Epitelio Pigmentado de la Retina/metabolismo , Serpinas/metabolismo , Andamios del Tejido , Resultado del Tratamiento , Xilenos
10.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33526699

RESUMEN

Alu retroelements propagate via retrotransposition by hijacking long interspersed nuclear element-1 (L1) reverse transcriptase (RT) and endonuclease activities. Reverse transcription of Alu RNA into complementary DNA (cDNA) is presumed to occur exclusively in the nucleus at the genomic integration site. Whether Alu cDNA is synthesized independently of genomic integration is unknown. Alu RNA promotes retinal pigmented epithelium (RPE) death in geographic atrophy, an untreatable type of age-related macular degeneration. We report that Alu RNA-induced RPE degeneration is mediated via cytoplasmic L1-reverse-transcribed Alu cDNA independently of retrotransposition. Alu RNA did not induce cDNA production or RPE degeneration in L1-inhibited animals or human cells. Alu reverse transcription can be initiated in the cytoplasm via self-priming of Alu RNA. In four health insurance databases, use of nucleoside RT inhibitors was associated with reduced risk of developing atrophic macular degeneration (pooled adjusted hazard ratio, 0.616; 95% confidence interval, 0.493-0.770), thus identifying inhibitors of this Alu replication cycle shunt as potential therapies for a major cause of blindness.


Asunto(s)
Elementos Alu/genética , Elementos de Nucleótido Esparcido Largo/genética , Degeneración Macular/genética , Pigmentos Retinianos/metabolismo , Animales , Citoplasma/genética , ADN Complementario/genética , Epitelio/metabolismo , Epitelio/patología , Humanos , Degeneración Macular/patología , Pigmentos Retinianos/biosíntesis , Retroelementos/genética , Transcripción Reversa/genética
11.
Front Neurosci ; 15: 780841, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35082594

RESUMEN

Purpose: To investigate how modulating ocular sympathetic activity affects progression of choroidal neovascularization (CNV), a hallmark feature of wet age-related macular degeneration (AMD). Methods: In the first of two studies, Brown Norway rats underwent laser-induced CNV and were assigned to one of the following groups: daily eye drops of artificial tears (n = 10; control group); daily eye drops of the ß-adrenoreceptor agonist isoproterenol (n = 10); daily eye drops of the ß-adrenoreceptor antagonist propranolol (n = 10); sympathetic internal carotid nerve (ICN) transection 6 weeks prior to laser-induced CNV (n = 10). In the second study, rats underwent laser-induced CNV followed by ICN transection at different time points: immediately after the laser injury (n = 6), 7 days after the laser injury (n = 6), and sham surgery 7 days after the laser injury (n = 6; control group). All animals were euthanized 14 days after laser application. CNV development was quantified with fluorescein angiography and optical coherence tomography (in vivo), as well as lesion volume analysis using 3D confocal reconstruction (postmortem). Angiogenic growth factor protein levels in the choroid were measured with ELISA. Results: In the first study, blocking ocular sympathetic activity through pharmacological or surgical manipulation led to a 75% or 70% reduction in CNV lesion volume versus the control group, respectively (P < 0.001). Stimulating ocular sympathetic activity with isoproterenol also led to a reduction in lesion volume, but only by 27% versus controls (P < 0.05). VEGF protein levels in the choroid were elevated in the three treatment groups (P < 0.01). In the second study, fluorescein angiography and CNV lesion volume analysis indicated that surgically removing the ocular sympathetic supply inhibited progression of laser-induced CNV, regardless of whether ICN transection was performed on the same day or 7 days after the laser injury. Conclusion: Surgical and pharmacological block of ocular sympathetic activity can inhibit progression of CNV in a rat model. Therefore, electrical block of ICN activity could be a potential bioelectronic medicine strategy for treating wet AMD.

12.
Oxid Med Cell Longev ; 2020: 2583601, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32215170

RESUMEN

Cellular senescence is a state of irreversible cell cycle arrest in response to an array of cellular stresses. An important role for senescence has been shown for a number of pathophysiological conditions that include cardiovascular disease, pulmonary fibrosis, and diseases of the skin. However, whether senescence contributes to the progression of age-related macular degeneration (AMD) has not been studied in detail so far and the present review describes the recent research on this topic. We present an overview of the types of senescence, pathways of senescence, senescence-associated secretory phenotype (SASP), the role of mitochondria, and their functional implications along with antisenescent therapies. As a central mechanism, senescent cells can impact the surrounding tissue microenvironment via the secretion of a pool of bioactive molecules, termed the SASP. An updated summary of a number of new members of the ever-growing SASP family is presented. Further, we introduce the significance of mechanisms by which mitochondria may participate in the development of cellular senescence. Emerging evidence shows that extracellular vesicles (EVs) are important mediators of the effects of senescent cells on their microenvironment. Based on recent studies, there is reasonable evidence that senescence could be a modifiable factor, and hence, it may be possible to delay age-related diseases by modulating basic aging mechanisms using SASP inhibitors/senolytic drugs. Thus, antisenescent therapies in aging and age-related diseases appear to have a promising potential.


Asunto(s)
Envejecimiento/patología , Senescencia Celular , Oftalmopatías/patología , Envejecimiento/efectos de los fármacos , Envejecimiento/metabolismo , Biomarcadores/metabolismo , Senescencia Celular/efectos de los fármacos , Metabolismo Energético , Vesículas Extracelulares/metabolismo , Oftalmopatías/tratamiento farmacológico , Oftalmopatías/metabolismo , Humanos , Mitocondrias/metabolismo , Fenotipo , Transducción de Señal
13.
Acta Neuropathol ; 139(5): 813-836, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32043162

RESUMEN

Pericyte loss and deficient vascular platelet-derived growth factor receptor-ß (PDGFRß) signaling are prominent features of the blood-brain barrier breakdown described in Alzheimer's disease (AD) that can predict cognitive decline yet have never been studied in the retina. Recent reports using noninvasive retinal amyloid imaging, optical coherence tomography angiography, and histological examinations support the existence of vascular-structural abnormalities and vascular amyloid ß-protein (Aß) deposits in retinas of AD patients. However, the cellular and molecular mechanisms of such retinal vascular pathology were not previously explored. Here, by modifying a method of enzymatically clearing non-vascular retinal tissue and fluorescent immunolabeling of the isolated blood vessel network, we identified substantial pericyte loss together with significant Aß deposition in retinal microvasculature and pericytes in AD. Evaluation of postmortem retinas from a cohort of 56 human donors revealed an early and progressive decrease in vascular PDGFRß in mild cognitive impairment (MCI) and AD compared to cognitively normal controls. Retinal PDGFRß loss significantly associated with increased retinal vascular Aß40 and Aß42 burden. Decreased vascular LRP-1 and early apoptosis of pericytes in AD retina were also detected. Mapping of PDGFRß and Aß40 levels in pre-defined retinal subregions indicated that certain geometrical and cellular layers are more susceptible to AD pathology. Further, correlations were identified between retinal vascular abnormalities and cerebral Aß burden, cerebral amyloid angiopathy (CAA), and clinical status. Overall, the identification of pericyte and PDGFRß loss accompanying increased vascular amyloidosis in Alzheimer's retina implies compromised blood-retinal barrier integrity and provides new targets for AD diagnosis and therapy.


Asunto(s)
Enfermedad de Alzheimer/patología , Amiloidosis/patología , Encéfalo/patología , Pericitos/patología , Retina/patología , Anciano , Anciano de 80 o más Años , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Amiloidosis/complicaciones , Barrera Hematoencefálica/patología , Angiopatía Amiloide Cerebral/patología , Cognición/fisiología , Femenino , Humanos , Masculino
14.
Nanomedicine ; 24: 102111, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31655204

RESUMEN

Humanin (HN) is a hydrophobic 24-amino acid peptide derived from mitochondrial DNA that modulates cellular responses to oxidative stress and protects human retinal pigment epithelium (RPE) cells from apoptosis. To solubilize HN, this report describes two genetically-encoded fusions between HN and elastin-like polypeptides (ELP). ELPs provide steric stabilization and/or thermo-responsive phase separation. Fusions were designed to either remain soluble or phase separate at the physiological temperature of the retina. Interestingly, the soluble fusion assembles stable colloids with a hydrodynamic radius of 39.1 nm at 37°C. As intended, the thermo-responsive fusion forms large coacervates (>1,000 nm) at 37°C. Both fusions bind human RPE cells and protect against oxidative stress-induction of apoptosis (TUNEL, caspase-3 activation). Their activity is mediated through STAT3; furthermore, STAT3 inhibition eliminates their protection. These findings suggest that HN polypeptides may facilitate cellular delivery of biodegradable nanoparticles with potential protection against age-related diseases, including macular degeneration.


Asunto(s)
Elastina , Células Epiteliales/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Nanopartículas/química , Estrés Oxidativo/efectos de los fármacos , Péptidos , Epitelio Pigmentado de la Retina/metabolismo , Apoptosis/efectos de los fármacos , Células Cultivadas , Elastina/química , Elastina/farmacología , Células Epiteliales/patología , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/farmacología , Degeneración Macular/metabolismo , Degeneración Macular/patología , Péptidos/química , Péptidos/farmacología , Epitelio Pigmentado de la Retina/patología
15.
Ophthalmol Retina ; 4(3): 264-273, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31786135

RESUMEN

PURPOSE: To report the intraoperative methods and anatomic results for subretinal implantation of an investigational human embryonic stem cell-derived retinal pigment epithelium (RPE) monolayer seeded on a synthetic substrate (California Project to Cure Blindness Retinal Pigment Epithelium 1 [CPCB-RPE1]) in geographic atrophy (GA). DESIGN: Single-arm, open label, prospective, nonrandomized, Phase 1/2a study. PARTICIPANTS: Advanced non-neovascular age-related macular degeneration (NNAMD). METHODS: The worse-seeing eye (≤20/200) of each subject underwent subretinal implantation of a single 3.5×6.25 mm CPCB-RPE1 implant with a preplanned primary end point of safety and efficacy at 365 days. Commercially available 23-gauge vitrectomy equipment, custom surgical forceps, and operating microscope with or without intraoperative OCT (iOCT) were used. Exact Wilcoxon rank-sum tests and Spearman rank correlation coefficients were used to assess the association of the percentage of the GA area covered by the implant with patient and surgery characteristics. The partial Spearman correlation coefficient was calculated for the correlation between duration of surgery and baseline GA size after adjustment for surgeon experience. MAIN OUTCOME MEASURES: Intraoperative exploratory measures are reported, including area of GA covered by implant, subretinal position of implant, duration of surgery, and incidence of adverse events. Operative recordings and reports were used to determine exploratory outcome measures. RESULTS: Sixteen subjects were enrolled with a median age of 78 years (range, 69-85 years). Median duration of the surgery for all subjects was 160 minutes (range, 121-466 minutes). Intraoperative OCT was used to guide subretinal placement in 9 cases. Intraoperative OCT was potentially useful in identifying pathology not evident with standard intraoperative visualization. Median GA area at baseline was 13.8 mm2 (range, 6.0-46.4 mm2), and median GA area left uncovered by the implant was 1.7 mm2 (range, 0-20.4 mm2). On average, 86.9% of the baseline GA area was covered by the implant. In 5 subjects, >90% of the GA area was covered. Baseline GA size was inversely correlated with percentage of GA area covered by the implant (rs=-0.72; P = 0.002). No unanticipated serious adverse events related to the implant or surgery were reported. CONCLUSIONS: Surgical implantation of CPCB-RPE1 targeted to the area of GA in subjects with advanced NNAMD is feasible in an outpatient setting. Intraoperative OCT is not necessary but potentially useful in identifying subretinal pathology and confirming implant location.


Asunto(s)
Atrofia Geográfica/cirugía , Células Madre Embrionarias Humanas/citología , Epitelio Pigmentado de la Retina/trasplante , Trasplante de Células Madre/métodos , Anciano , Anciano de 80 o más Años , Femenino , Angiografía con Fluoresceína/métodos , Fondo de Ojo , Atrofia Geográfica/patología , Humanos , Masculino , Estudios Prospectivos , Epitelio Pigmentado de la Retina/citología , Tomografía de Coherencia Óptica/métodos
16.
Invest Ophthalmol Vis Sci ; 60(13): 4303-4309, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31618767

RESUMEN

Purpose: To investigate specific effects of denervation and stimulation of the internal carotid nerve (ICN) on the choroid and retina. Methods: Female Sprague Dawley rats underwent unilateral ICN transection (n = 20) or acute ICN electrical stimulation (n = 7). Rats in the denervation group were euthanized 6 weeks after nerve transection, and eyes were analyzed for changes in choroidal vascularity (via histomorphometry) or angiogenic growth factors and inflammatory markers (via ELISA). Rats in the stimulation group received acute ICN electrical stimulation with a bipolar cuff electrode over a range of stimulus amplitudes, frequencies, and pulse widths. Choroidal blood flow and pupil diameter were monitored before, during, and after stimulation. Results: Six weeks after unilateral ICN transection, sympathectomized choroids exhibited increased vascularity, defined as the percentage of choroidal surface area occupied by blood vessel lumina. Vascular endothelial growth factor (VEGF) and VEGF receptor-2 (VEGFR-2) protein levels in denervated choroids were 61% and 124% higher than in contralateral choroids, respectively. TNF-α levels in denervated retinas increased by 3.3-fold relative to levels in contralateral retinas. In animals undergoing acute ICN electrical stimulation, mydriasis and reduced choroidal blood flow were observed in the ipsilateral eye. The magnitude of the reduction in blood flow correlated positively with stimulus frequency. Conclusions: Modulation of ICN activity reveals a potential role of the ocular sympathetic system in regulating endpoints related to neovascular diseases of the eye.


Asunto(s)
Arteria Carótida Interna/inervación , Coroides/irrigación sanguínea , Simpatectomía , Sistema Nervioso Simpático/cirugía , Animales , Biomarcadores/metabolismo , Coroides/metabolismo , Estimulación Eléctrica , Ensayo de Inmunoadsorción Enzimática , Femenino , Pupila/fisiología , Ratas , Ratas Sprague-Dawley , Retina/metabolismo , Ganglio Cervical Superior/fisiología , Sistema Nervioso Simpático/fisiología , Factor de Necrosis Tumoral alfa/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
17.
Int J Mol Sci ; 20(19)2019 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-31569695

RESUMEN

Age-related macular degeneration (AMD) is a leading cause of blindness in the developed world. The retinal pigment epithelium (RPE) is a critical site of pathology in AMD. Oxidative stress plays a key role in the development of AMD. We generated a chimeric high-density lipoprotein (HDL), mimetic peptide named HM-10/10, with anti-oxidant properties and investigated its potential for the treatment of retinal disease using cell culture and animal models of RPE and photoreceptor (PR) degeneration. Treatment with HM-10/10 peptide prevented human fetal RPE cell death caused by tert-Butyl hydroperoxide (tBH)-induced oxidative stress and sodium iodate (NaIO3), which causes RPE atrophy and is a model of geographic atrophy in mice. We also show that HM-10/10 peptide ameliorated photoreceptor cell death and significantly improved retinal function in a mouse model of N-methyl-N-nitrosourea (MNU)-induced PR degeneration. Our results demonstrate that HM-10/10 protects RPE and retina from oxidant injury and can serve as a potential therapeutic agent for the treatment of retinal degeneration.


Asunto(s)
Lipoproteínas HDL/metabolismo , Péptidos/farmacología , Células Fotorreceptoras/efectos de los fármacos , Células Fotorreceptoras/metabolismo , Degeneración Retiniana/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Animales , Apoptosis , Caspasa 3/metabolismo , Caspasa 7/metabolismo , Modelos Animales de Enfermedad , Yodatos , Ratones , Estrés Oxidativo/efectos de los fármacos , Degeneración Retiniana/diagnóstico , Degeneración Retiniana/etiología , Epitelio Pigmentado de la Retina/patología , Tomografía de Coherencia Óptica
18.
Transl Vis Sci Technol ; 8(3): 31, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31171998

RESUMEN

PURPOSE: To characterize histologic changes in the optic nerve and the retina of an end-stage retinitis pigmentosa (RP) patient after long-term implantation with the Argus II retinal prosthesis system. METHODS: Serial cross sections from the patient's both eyes were collected postmortem 6 years after implantation. Optic nerve from both eyes were morphometrically analyzed and compared. Retina underneath and outside the array was analyzed and compared with corresponding regions in the fellow eye. RESULTS: Although the optic nerve of the implant eye demonstrated significantly more overall atrophy than the fellow eye (P < 0.01), the temporal quadrant that retinotopically corresponded to the location of the array did not show additional damage. The total neuron count of the macular area was not significantly different between the two eyes, but the tack locations and their adjacent areas showed significantly fewer neurons than other perimacular areas. There was an increased expression of glial fibrillary acidic protein (GFAP) throughout the retina in the implant eye versus the fellow eye, but there was no significant difference in the cellular retinaldehyde-binding protein (CRALBP) expression. Except for the revision tack site, no significant increase of inflammatory reaction was detected in the implant eye. CONCLUSION: Long-term implantation and electrical stimulation with an Argus II retinal prosthesis system did not result in significant tissue damage that could be detected by a morphometric analysis. TRANSLATIONAL RELEVANCE: This study supports the long-term safety of the Argus II device and encourages further development of bioelectronics devices at the retina-machine interface.

19.
Invest Ophthalmol Vis Sci ; 60(2): 500-516, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30707752

RESUMEN

Purpose: To characterize two mitochondrial membrane transporters 2-oxoglutarate (OGC) and dicarboxylate (DIC) in human RPE (hRPE) and to elucidate their role in the regulation of mitochondrial glutathione (mGSH) uptake and cell death in oxidative stress. Methods: The localization of OGC and DIC proteins in confluent hRPE, polarized hRPE monolayers and mouse retina was assessed by immunoblotting and confocal microscopy. Time- and dose-dependent expression of the two carriers were determined after treatment of hRPE with H2O2, phenyl succinate (PS), and butyl malonate (BM), respectively, for 24 hours. The effect of inhibition of OGC and DIC on apoptosis (TUNEL), mGSH, and mtDNA was determined. Silencing of OGC by siRNA knockdown on RPE cell death was studied. Kinetics of caspase 3/7 activation with OGC and DIC inhibitors and effect of cotreatment with glutathione monoethyl ester (GSH-MEE) was determined using the IncuCyte live cell imaging. Results: OGC and DIC are expressed in hRPE mitochondria and exhibited a time- and dose-dependent decrease with stress. Pharmacologic inhibition caused a decrease in OGC and DIC in mitochondria without changes in mtDNA and resulted in increased apoptosis and mGSH depletion. GSH-MEE prevented apoptosis through restoration of mGSH. OGC siRNA exacerbated apoptotic cell death in stressed RPE which was inhibited by increased mGSH from GSH-MEE cotreatment. Conclusions: Characterization and mechanism of action of two carrier proteins of mGSH uptake in RPE are reported. Regulation of OGC and DIC will be of value in devising therapeutic strategies for retinal disorders such as AMD.


Asunto(s)
Transportadores de Ácidos Dicarboxílicos/metabolismo , Glutatión/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Mitocondrias/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Animales , Apoptosis/efectos de los fármacos , Transporte Biológico , Western Blotting , Proteínas Portadoras/metabolismo , Células Cultivadas , ADN Mitocondrial/metabolismo , Transportadores de Ácidos Dicarboxílicos/genética , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica/fisiología , Humanos , Peróxido de Hidrógeno/farmacología , Etiquetado Corte-Fin in Situ , Masculino , Malonatos/farmacología , Proteínas de Transporte de Membrana/genética , Ratones , Microscopía Confocal , Estrés Oxidativo/efectos de los fármacos , Reacción en Cadena en Tiempo Real de la Polimerasa , Succinatos/farmacología , Factores de Tiempo
20.
Retina ; 39(2): 265-273, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29190236

RESUMEN

PURPOSE: We sought to characterize the angiofibrotic and apoptotic effects of vascular endothelial growth factor (VEGF)-inhibition on fibrovascular epiretinal membranes in eyes with traction retinal detachment because of proliferative diabetic retinopathy. METHODS: Membranes were excised from 20 eyes of 19 patients (10 randomized to intravitreal bevacizumab, 10 controls) at vitrectomy. Membranes were stained with antibodies targeting connective tissue growth factor (CTGF) or VEGF and colabeled with antibodies directed against endothelial cells (CD31), myofibroblasts, or retinal pigment epithelium markers. Quantitative and colocalization analyses of antibody labeling were obtained through immunofluorescence confocal microscopy. Masson trichrome staining, cell counting of hematoxylin and eosin sections, and terminal dUTP nick-end labeling staining were performed. RESULTS: High levels of fibrosis were observed in both groups. Cell apoptosis was higher (P = 0.05) in bevacizumab-treated membranes compared with controls. The bevacizumab group had a nonsignificant reduction in colocalization in CD31-CTGF and cytokeratin-VEGF studies compared with controls. Vascular endothelial growth factor in extracted membranes was positively correlated with vitreous levels of VEGF; CTGF in extracted membranes was negatively correlated with vitreous levels of CTGF. CONCLUSION: Bevacizumab suppresses vitreous VEGF levels, but does not significantly alter VEGF or CTGF in diabetic membranes that may be explained by high baseline levels of fibrosis. Bevacizumab may cause apoptosis within fibrovascular membranes.


Asunto(s)
Apoptosis , Bevacizumab/administración & dosificación , Retinopatía Diabética/patología , Membrana Epirretinal/cirugía , Retina/patología , Vitrectomía/métodos , Actinas/biosíntesis , Inhibidores de la Angiogénesis/administración & dosificación , Proliferación Celular , Factor de Crecimiento del Tejido Conjuntivo/biosíntesis , Retinopatía Diabética/complicaciones , Retinopatía Diabética/tratamiento farmacológico , Membrana Epirretinal/complicaciones , Membrana Epirretinal/patología , Fibrosis/patología , Humanos , Inyecciones Intravítreas , Queratinas/biosíntesis , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/biosíntesis , Estudios Prospectivos , Receptores de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Retina/metabolismo , Factor A de Crecimiento Endotelial Vascular/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...