Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 2831: 283-299, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39134857

RESUMEN

Mosaic Analysis with Double Markers (MADM) is a powerful genetic method typically used for lineage tracing and to disentangle cell autonomous and tissue-wide roles of candidate genes with single cell resolution. Given the relatively sparse labeling, depending on which of the 19 MADM chromosomes one chooses, the MADM approach represents the perfect opportunity for cell morphology analysis. Various MADM studies include reports of morphological anomalies and phenotypes in the central nervous system (CNS). MADM for any candidate gene can easily incorporate morphological analysis within the experimental workflow. Here, we describe the methods of morphological cell analysis which we developed in the course of diverse recent MADM studies. This chapter will specifically focus on methods to quantify aspects of the morphology of neurons and astrocytes within the CNS, but these methods can broadly be applied to any MADM-labeled cells throughout the entire organism. We will cover two analyses-soma volume and dendrite characterization-of physical characteristics of pyramidal neurons in the somatosensory cortex, and two analyses-volume and Sholl analysis-of astrocyte morphology.


Asunto(s)
Astrocitos , Neuroglía , Neuronas , Animales , Neuronas/citología , Neuronas/metabolismo , Astrocitos/citología , Astrocitos/metabolismo , Neuroglía/citología , Neuroglía/metabolismo , Ratones , Mosaicismo , Biomarcadores , Dendritas/metabolismo , Corteza Somatosensorial/citología
2.
STAR Protoc ; 5(3): 103168, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38968076

RESUMEN

The lineage relationship of clonally-related cells offers important insights into the ontogeny and cytoarchitecture of the brain in health and disease. Here, we provide a protocol to concurrently assess cell lineage relationship and cell-type identity among clonally-related cells in situ. We first describe the preparation and screening of acute brain slices containing clonally-related cells labeled using mosaic analysis with double markers (MADM). We then outline steps to collect RNA from individual cells for downstream applications and cell-type identification using RNA sequencing. For complete details on the use and execution of this protocol, please refer to Cheung et al.1.

3.
STAR Protoc ; 5(3): 103157, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38935508

RESUMEN

The generation of diverse cell types during development is fundamental to brain functions. We outline a protocol to quantitatively assess the clonal output of individual neural progenitors using mosaic analysis with double markers (MADM) in mice. We first describe steps to acquire and reconstruct adult MADM clones in the superior colliculus. Then we detail analysis pipelines to determine clonal composition and architecture. This protocol enables the buildup of quantitative frameworks of lineage progression with precise spatial resolution in the brain. For complete details on the use and execution of this protocol, please refer to Cheung et al.1.

4.
STAR Protoc ; 5(1): 102795, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38165800

RESUMEN

Mosaic analysis with double markers (MADM) technology enables the sparse labeling of genetically defined neurons. We present a protocol for time-lapse imaging of cortical projection neuron migration in mice using MADM. We describe steps for the isolation, culturing, and 4D imaging of neuronal dynamics in MADM-labeled brain tissue. While this protocol is compatible with other single-cell labeling methods, the MADM approach provides a genetic platform for the functional assessment of cell-autonomous candidate gene function and the relative contribution of non-cell-autonomous effects. For complete details on the use and execution of this protocol, please refer to Hansen et al. (2022),1 Contreras et al. (2021),2 and Amberg and Hippenmeyer (2021).3.


Asunto(s)
Neuronas , Ratones , Animales , Imagen de Lapso de Tiempo
5.
STAR Protoc ; 5(1): 102771, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38070137

RESUMEN

Mosaic analysis with double markers (MADM) technology enables the generation of genetic mosaic tissue in mice and high-resolution phenotyping at the individual cell level. Here, we present a protocol for isolating MADM-labeled cells with high yield for downstream molecular analyses using fluorescence-activated cell sorting (FACS). We describe steps for generating MADM-labeled mice, perfusion, single-cell suspension, and debris removal. We then detail procedures for cell sorting by FACS and downstream analysis. This protocol is suitable for embryonic to adult mice. For complete details on the use and execution of this protocol, please refer to Contreras et al. (2021).1.


Asunto(s)
Encéfalo , Animales , Ratones , Citometría de Flujo , Separación Celular , Movimiento Celular , Perfusión
6.
Neuron ; 112(2): 230-246.e11, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38096816

RESUMEN

The superior colliculus (SC) in the mammalian midbrain is essential for multisensory integration and is composed of a rich diversity of excitatory and inhibitory neurons and glia. However, the developmental principles directing the generation of SC cell-type diversity are not understood. Here, we pursued systematic cell lineage tracing in silico and in vivo, preserving full spatial information, using genetic mosaic analysis with double markers (MADM)-based clonal analysis with single-cell sequencing (MADM-CloneSeq). The analysis of clonally related cell lineages revealed that radial glial progenitors (RGPs) in SC are exceptionally multipotent. Individual resident RGPs have the capacity to produce all excitatory and inhibitory SC neuron types, even at the stage of terminal division. While individual clonal units show no pre-defined cellular composition, the establishment of appropriate relative proportions of distinct neuronal types occurs in a PTEN-dependent manner. Collectively, our findings provide an inaugural framework at the single-RGP/-cell level of the mammalian SC ontogeny.


Asunto(s)
Células-Madre Neurales , Colículos Superiores , Animales , Colículos Superiores/fisiología , Neuronas/metabolismo , Neuroglía/metabolismo , Células-Madre Neurales/metabolismo , Linaje de la Célula/fisiología , Mamíferos
7.
Cell ; 186(9): 1950-1967.e25, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-36996814

RESUMEN

Little is known about the critical metabolic changes that neural cells have to undergo during development and how temporary shifts in this program can influence brain circuitries and behavior. Inspired by the discovery that mutations in SLC7A5, a transporter of metabolically essential large neutral amino acids (LNAAs), lead to autism, we employed metabolomic profiling to study the metabolic states of the cerebral cortex across different developmental stages. We found that the forebrain undergoes significant metabolic remodeling throughout development, with certain groups of metabolites showing stage-specific changes, but what are the consequences of perturbing this metabolic program? By manipulating Slc7a5 expression in neural cells, we found that the metabolism of LNAAs and lipids are interconnected in the cortex. Deletion of Slc7a5 in neurons affects the postnatal metabolic state, leading to a shift in lipid metabolism. Additionally, it causes stage- and cell-type-specific alterations in neuronal activity patterns, resulting in a long-term circuit dysfunction.


Asunto(s)
Aminoácidos Neutros , Transportador de Aminoácidos Neutros Grandes 1 , Femenino , Humanos , Embarazo , Aminoácidos Neutros/genética , Aminoácidos Neutros/metabolismo , Encéfalo/metabolismo , Transportador de Aminoácidos Neutros Grandes 1/genética , Transportador de Aminoácidos Neutros Grandes 1/metabolismo , Mutación , Neuronas/metabolismo , Animales , Ratones
9.
Neuron ; 111(3): 291-293, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36731425

RESUMEN

In this issue of Neuron, Espinosa-Medina et al.1 present the TEMPO (Temporal Encoding and Manipulation in a Predefined Order) system, which enables the marking and genetic manipulation of sequentially generated cell lineages in vertebrate species in vivo.


Asunto(s)
Linaje de la Célula , Ingeniería Genética , Neuronas , Células Madre , Animales , Ingeniería Genética/métodos
10.
Curr Opin Neurobiol ; 79: 102695, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36842274

RESUMEN

How to generate a brain of correct size and with appropriate cell-type diversity during development is a major question in Neuroscience. In the developing neocortex, radial glial progenitor (RGP) cells are the main neural stem cells that produce cortical excitatory projection neurons, glial cells, and establish the prospective postnatal stem cell niche in the lateral ventricles. RGPs follow a tightly orchestrated developmental program that when disrupted can result in severe cortical malformations such as microcephaly and megalencephaly. The precise cellular and molecular mechanisms instructing faithful RGP lineage progression are however not well understood. This review will summarize recent conceptual advances that contribute to our understanding of the general principles of RGP lineage progression.


Asunto(s)
Neocórtex , Células-Madre Neurales , Neuronas , Estudios Prospectivos , Neurogénesis/fisiología , Células-Madre Neurales/fisiología , Corteza Cerebral , Linaje de la Célula/fisiología
11.
J Neurophysiol ; 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36695533

RESUMEN

Presynaptic inputs determine the pattern of activation of postsynaptic neurons in a neural circuit. Molecular and genetic pathways that regulate the selective formation of subsets of presynaptic inputs are largely unknown, despite significant understanding of the general process of synaptogenesis. In this study, we have begun to identify such factors using the spinal monosynaptic stretch reflex circuit as a model system. In this neuronal circuit, Ia proprioceptive afferents establish monosynaptic connections with spinal motor neurons that project to the same muscle (termed homonymous connections) or muscles with related or synergistic function. However, monosynaptic connections are not formed with motor neurons innervating muscles with antagonistic functions. The ETS transcription factor ER81 (also known as ETV1) is expressed by all proprioceptive afferents, but only a small set of motor neuron pools in the lumbar spinal cord of the mouse. Here we use conditional mouse genetic techniques to eliminate Er81 expression selectively from motor neurons. We find that ablation of Er81 in motor neurons reduces synaptic inputs from proprioceptive afferents conveying information from homonymous and synergistic muscles, with no change observed in the connectivity pattern from antagonistic proprioceptive afferents. In summary, these findings suggest a role for ER81 in defined motor neuron pools to control the assembly of specific presynaptic inputs and thereby influence the profile of activation of these motor neurons.

12.
Sci Adv ; 8(44): eabq1263, 2022 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-36322669

RESUMEN

The generation of a correctly sized cerebral cortex with all-embracing neuronal and glial cell-type diversity critically depends on faithful radial glial progenitor (RGP) cell proliferation/differentiation programs. Temporal RGP lineage progression is regulated by Polycomb repressive complex 2 (PRC2), and loss of PRC2 activity results in severe neurogenesis defects and microcephaly. How PRC2-dependent gene expression instructs RGP lineage progression is unknown. Here, we use mosaic analysis with double markers (MADM)-based single-cell technology and demonstrate that PRC2 is not cell-autonomously required in neurogenic RGPs but rather acts at the global tissue-wide level. Conversely, cortical astrocyte production and maturation is cell-autonomously controlled by PRC2-dependent transcriptional regulation. We thus reveal highly distinct and sequential PRC2 functions in RGP lineage progression that are dependent on complex interplays between intrinsic and tissue-wide properties. In a broader context, our results imply a critical role for the genetic and cellular niche environment in neural stem cell behavior.


Asunto(s)
Células-Madre Neurales , Complejo Represivo Polycomb 2 , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , Diferenciación Celular/genética , Neurogénesis/genética , Neuronas/metabolismo
13.
Nat Immunol ; 23(8): 1246-1255, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35817845

RESUMEN

Lymph nodes (LNs) comprise two main structural elements: fibroblastic reticular cells that form dedicated niches for immune cell interaction and capsular fibroblasts that build a shell around the organ. Immunological challenge causes LNs to increase more than tenfold in size within a few days. Here, we characterized the biomechanics of LN swelling on the cellular and organ scale. We identified lymphocyte trapping by influx and proliferation as drivers of an outward pressure force, causing fibroblastic reticular cells of the T-zone (TRCs) and their associated conduits to stretch. After an initial phase of relaxation, TRCs sensed the resulting strain through cell matrix adhesions, which coordinated local growth and remodeling of the stromal network. While the expanded TRC network readopted its typical configuration, a massive fibrotic reaction of the organ capsule set in and countered further organ expansion. Thus, different fibroblast populations mechanically control LN swelling in a multitier fashion.


Asunto(s)
Ganglios Linfáticos , Células del Estroma , Animales , Fibroblastos , Linfocitos , Ratones , Ratones Endogámicos C57BL
14.
Mol Autism ; 13(1): 27, 2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35733184

RESUMEN

BACKGROUND: Proper cerebral cortical development depends on the tightly orchestrated migration of newly born neurons from the inner ventricular and subventricular zones to the outer cortical plate. Any disturbance in this process during prenatal stages may lead to neuronal migration disorders (NMDs), which can vary in extent from focal to global. Furthermore, NMDs show a substantial comorbidity with other neurodevelopmental disorders, notably autism spectrum disorders (ASDs). Our previous work demonstrated focal neuronal migration defects in mice carrying loss-of-function alleles of the recognized autism risk gene WDFY3. However, the cellular origins of these defects in Wdfy3 mutant mice remain elusive and uncovering it will provide critical insight into WDFY3-dependent disease pathology. METHODS: Here, in an effort to untangle the origins of NMDs in Wdfy3lacZ mice, we employed mosaic analysis with double markers (MADM). MADM technology enabled us to genetically distinctly track and phenotypically analyze mutant and wild-type cells concomitantly in vivo using immunofluorescent techniques. RESULTS: We revealed a cell autonomous requirement of WDFY3 for accurate laminar positioning of cortical projection neurons and elimination of mispositioned cells during early postnatal life. In addition, we identified significant deviations in dendritic arborization, as well as synaptic density and morphology between wild type, heterozygous, and homozygous Wdfy3 mutant neurons in Wdfy3-MADM reporter mice at postnatal stages. LIMITATIONS: While Wdfy3 mutant mice have provided valuable insight into prenatal aspects of ASD pathology that remain inaccessible to investigation in humans, like most animal models, they do not a perfectly replicate all aspects of human ASD biology. The lack of human data makes it indeterminate whether morphological deviations described here apply to ASD patients or some of the other neurodevelopmental conditions associated with WDFY3 mutation. CONCLUSIONS: Our genetic approach revealed several cell autonomous requirements of WDFY3 in neuronal development that could underlie the pathogenic mechanisms of WDFY3-related neurodevelopmental conditions. The results are also consistent with findings in other ASD animal models and patients and suggest an important role for WDFY3 in regulating neuronal function and interconnectivity in postnatal life.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Trastorno Autístico , Proteínas Relacionadas con la Autofagia , Corteza Cerebral , Neuronas , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Trastorno Autístico/genética , Proteínas Relacionadas con la Autofagia/genética , Corteza Cerebral/citología , Humanos , Ratones , Mutación , Neurogénesis/genética , Neuronas/citología
15.
Cell Syst ; 13(6): 438-453.e5, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35452605

RESUMEN

Mutations are acquired frequently, such that each cell's genome inscribes its history of cell divisions. Common genomic alterations involve loss of heterozygosity (LOH). LOH accumulates throughout the genome, offering large encoding capacity for inferring cell lineage. Using only single-cell RNA sequencing (scRNA-seq) of mouse brain cells, we found that LOH events spanning multiple genes are revealed as tracts of monoallelically expressed, constitutionally heterozygous single-nucleotide variants (SNVs). We simultaneously inferred cell lineage and marked developmental time points based on X chromosome inactivation and the total number of LOH events while identifying cell types from gene expression patterns. Our results are consistent with progenitor cells giving rise to multiple cortical cell types through stereotyped expansion and distinct waves of neurogenesis. This type of retrospective analysis could be incorporated into scRNA-seq pipelines and, compared with experimental approaches for determining lineage in model organisms, is applicable where genetic engineering is prohibited, such as humans.


Asunto(s)
Pérdida de Heterocigocidad , Análisis de la Célula Individual , Animales , Encéfalo , Ratones , Neurogénesis , Estudios Retrospectivos , Análisis de la Célula Individual/métodos
16.
Oxf Open Neurosci ; 1: kvac009, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-38596707

RESUMEN

The mammalian neocortex is composed of diverse neuronal and glial cell classes that broadly arrange in six distinct laminae. Cortical layers emerge during development and defects in the developmental programs that orchestrate cortical lamination are associated with neurodevelopmental diseases. The developmental principle of cortical layer formation depends on concerted radial projection neuron migration, from their birthplace to their final target position. Radial migration occurs in defined sequential steps, regulated by a large array of signaling pathways. However, based on genetic loss-of-function experiments, most studies have thus far focused on the role of cell-autonomous gene function. Yet, cortical neuron migration in situ is a complex process and migrating neurons traverse along diverse cellular compartments and environments. The role of tissue-wide properties and genetic state in radial neuron migration is however not clear. Here we utilized mosaic analysis with double markers (MADM) technology to either sparsely or globally delete gene function, followed by quantitative single-cell phenotyping. The MADM-based gene ablation paradigms in combination with computational modeling demonstrated that global tissue-wide effects predominate cell-autonomous gene function albeit in a gene-specific manner. Our results thus suggest that the genetic landscape in a tissue critically affects the overall migration phenotype of individual cortical projection neurons. In a broader context, our findings imply that global tissue-wide effects represent an essential component of the underlying etiology associated with focal malformations of cortical development in particular, and neurological diseases in general.

17.
STAR Protoc ; 2(4): 100939, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34825212

RESUMEN

Mosaic analysis with double markers (MADM) technology enables the generation of genetic mosaic tissue in mice. MADM enables concomitant fluorescent cell labeling and introduction of a mutation of a gene of interest with single-cell resolution. This protocol highlights major steps for the generation of genetic mosaic tissue and the isolation and processing of respective tissues for downstream histological analysis. For complete details on the use and execution of this protocol, please refer to Contreras et al. (2021).


Asunto(s)
Marcadores Genéticos/genética , Técnicas Genéticas , Mosaicismo , Animales , Linaje de la Célula/genética , Femenino , Histocitoquímica , Procesamiento de Imagen Asistido por Computador , Masculino , Ratones , Microscopía Confocal , Análisis de la Célula Individual
18.
Nat Commun ; 12(1): 3804, 2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-34155196

RESUMEN

In mammalian genomes, differentially methylated regions (DMRs) and histone marks including trimethylation of histone 3 lysine 27 (H3K27me3) at imprinted genes are asymmetrically inherited to control parentally-biased gene expression. However, neither parent-of-origin-specific transcription nor imprints have been comprehensively mapped at the blastocyst stage of preimplantation development. Here, we address this by integrating transcriptomic and epigenomic approaches in mouse preimplantation embryos. We find that seventy-one genes exhibit previously unreported parent-of-origin-specific expression in blastocysts (nBiX: novel blastocyst-imprinted expressed). Uniparental expression of nBiX genes disappears soon after implantation. Micro-whole-genome bisulfite sequencing (µWGBS) of individual uniparental blastocysts detects 859 DMRs. We further find that 16% of nBiX genes are associated with a DMR, whereas most are associated with parentally-biased H3K27me3, suggesting a role for Polycomb-mediated imprinting in blastocysts. nBiX genes are clustered: five clusters contained at least one published imprinted gene, and five clusters exclusively contained nBiX genes. These data suggest that early development undergoes a complex program of stage-specific imprinting involving different tiers of regulation.


Asunto(s)
Blastocisto/metabolismo , Impresión Genómica/genética , Histonas/metabolismo , Alelos , Animales , Blastocisto/citología , Metilación de ADN , Desarrollo Embrionario/genética , Femenino , Expresión Génica , Células Germinativas/metabolismo , Estratos Germinativos/metabolismo , Haploidia , Masculino , Metilación , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Familia de Multigenes , Sitio de Iniciación de la Transcripción
19.
Cell Rep ; 35(10): 109208, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34107249

RESUMEN

Brain neurons arise from relatively few progenitors generating an enormous diversity of neuronal types. Nonetheless, a cardinal feature of mammalian brain neurogenesis is thought to be that excitatory and inhibitory neurons derive from separate, spatially segregated progenitors. Whether bi-potential progenitors with an intrinsic capacity to generate both lineages exist and how such a fate decision may be regulated are unknown. Using cerebellar development as a model, we discover that individual progenitors can give rise to both inhibitory and excitatory lineages. Gradations of Notch activity determine the fates of the progenitors and their daughters. Daughters with the highest levels of Notch activity retain the progenitor fate, while intermediate levels of Notch activity generate inhibitory neurons, and daughters with very low levels of Notch signaling adopt the excitatory fate. Therefore, Notch-mediated binary cell fate choice is a mechanism for regulating the ratio of excitatory to inhibitory neurons from common progenitors.


Asunto(s)
Cerebelo/fisiología , Neuronas/metabolismo , Receptores Notch/metabolismo , Diferenciación Celular , Humanos
20.
Neuron ; 109(15): 2427-2442.e10, 2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-34171291

RESUMEN

Astrocytes extensively infiltrate the neuropil to regulate critical aspects of synaptic development and function. This process is regulated by transcellular interactions between astrocytes and neurons via cell adhesion molecules. How astrocytes coordinate developmental processes among one another to parse out the synaptic neuropil and form non-overlapping territories is unknown. Here we identify a molecular mechanism regulating astrocyte-astrocyte interactions during development to coordinate astrocyte morphogenesis and gap junction coupling. We show that hepaCAM, a disease-linked, astrocyte-enriched cell adhesion molecule, regulates astrocyte competition for territory and morphological complexity in the developing mouse cortex. Furthermore, conditional deletion of Hepacam from developing astrocytes significantly impairs gap junction coupling between astrocytes and disrupts the balance between synaptic excitation and inhibition. Mutations in HEPACAM cause megalencephalic leukoencephalopathy with subcortical cysts in humans. Therefore, our findings suggest that disruption of astrocyte self-organization mechanisms could be an underlying cause of neural pathology.


Asunto(s)
Astrocitos/metabolismo , Moléculas de Adhesión Celular Neurona-Glia/metabolismo , Corteza Cerebral/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis/fisiología , Animales , Conexina 43/metabolismo , Uniones Comunicantes/metabolismo , Ratones , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...