Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(36): e2304851120, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37639608

RESUMEN

Memory formation and forgetting unnecessary memory must be balanced for adaptive animal behavior. While cyclic AMP (cAMP) signaling via dopamine neurons induces memory formation, here we report that cyclic guanine monophosphate (cGMP) signaling via dopamine neurons launches forgetting of unconsolidated memory in Drosophila. Genetic screening and proteomic analyses showed that neural activation induces the complex formation of a histone H3K9 demethylase, Kdm4B, and a GMP synthetase, Bur, which is necessary and sufficient for forgetting unconsolidated memory. Kdm4B/Bur is activated by phosphorylation through NO-dependent cGMP signaling via dopamine neurons, inducing gene expression, including kek2 encoding a presynaptic protein. Accordingly, Kdm4B/Bur activation induced presynaptic changes. Our data demonstrate a link between cGMP signaling and synapses via gene expression in forgetting, suggesting that the opposing functions of memory are orchestrated by distinct signaling via dopamine neurons, which affects synaptic integrity and thus balances animal behavior.


Asunto(s)
Neuronas Dopaminérgicas , Proteómica , Animales , Sistemas de Mensajero Secundario , Transducción de Señal , Memoria , Drosophila , Guanina , Histona Demetilasas
2.
SLAS Discov ; 27(8): 440-447, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36240996

RESUMEN

Given that histone acetylation via histone acetyltransferases (HATs) and histone deacetylases (HDACs) is significant in memory formation, HDAC2 has been thoroughly investigated as a potential therapeutic target for the treatment of cognitive dysfunction. Although HDAC inhibitors have been discovered through in vitro enzyme assay, off-target effects on other HDACs are common due to their conserved catalytic domains. Each HDAC could be regulated by specific intracellular molecular mechanisms, raising the possibility that a cell-based assay could identify selective inhibitors targeting specific HDACs through their regulatory mechanisms. Here, we propose a versatile, cell-based reporter system for screening HDAC2 inhibitors. Through RNA-sequencing from human cultured neuronal cells, we determined that expression of a transcriptional repressor, inhibitor of DNA binding 1 (ID1), is increased by knockdown of HDAC2. We also established the knock-in neuronal cell lines of a bioluminescence reporter gene to ID1. The knock-in cell lines showed significant reporter activity by known HDAC inhibitors and by HDAC2-knockdown but not by HDAC1-knockdown. Thus, our neuronal cell-based reporter system is a promising method for screening the specific inhibitors of HDAC2 but not HDAC1, by potentially targeting not only HDAC2, but also the regulatory mechanisms of HDAC2 in neurons.


Asunto(s)
Inhibidores de Histona Desacetilasas , Proyectos de Investigación , Humanos , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasa 2/genética
3.
Nat Commun ; 12(1): 628, 2021 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-33504795

RESUMEN

Consolidated memory can be preserved or updated depending on the environmental change. Although such conflicting regulation may happen during memory updating, the flexibility of memory updating may have already been determined in the initial memory consolidation process. Here, we explored the gating mechanism for activity-dependent transcription in memory consolidation, which is unexpectedly linked to the later memory updating in Drosophila. Through proteomic analysis, we discovered that the compositional change in the transcriptional repressor, which contains the histone deacetylase Rpd3 and CoRest, acts as the gating mechanism that opens and closes the time window for activity-dependent transcription. Opening the gate through the compositional change in Rpd3/CoRest is required for memory consolidation, but closing the gate through Rpd3/CoRest is significant to limit future memory updating. Our data indicate that the flexibility of memory updating is determined through the initial activity-dependent transcription, providing a mechanism involved in defining memory state.


Asunto(s)
Proteínas Co-Represoras/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Histona Desacetilasa 1/metabolismo , Memoria/fisiología , Transcripción Genética , Acetilación , Animales , Conducta Animal , Encéfalo/fisiología , Sitios Genéticos , Cuerpos Pedunculados/inervación , Unión Proteica , Mapeo de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , ARN Mensajero/genética , ARN Mensajero/metabolismo
4.
iScience ; 23(9): 101506, 2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32919371

RESUMEN

Light-inducible gene expression systems represent powerful methods for studying the functional roles of dynamic gene expression. Here, we developed an optimized light-inducible Gal4/UAS gene expression system for mammalian cells. We designed photoactivatable (PA)-Gal4 transcriptional activators based on the concept of split transcription factors, in which light-dependent interactions between Cry2-CIB1 PA-protein interaction modules can reconstitute a split Gal4 DNA-binding domain and p65 transcription activation domain. We developed a set of PA-Gal4 transcriptional activators (PA-Gal4cc), which differ in terms of induced gene expression levels following pulsed or prolonged light exposure, and which have different activation/deactivation kinetics. These systems offer optogenetic tools for the precise manipulation of gene expression at fine spatiotemporal resolution in mammalian cells.

5.
Proc Natl Acad Sci U S A ; 116(32): 16080-16085, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31337675

RESUMEN

Memory consolidation is augmented by repeated learning following rest intervals, which is known as the spacing effect. Although the spacing effect has been associated with cumulative cellular responses in the neurons engaged in memory, here, we report the neural circuit-based mechanism for generating the spacing effect in the memory-related mushroom body (MB) parallel circuits in Drosophila To investigate the neurons activated during the training, we monitored expression of phosphorylation of mitogen-activated protein kinase (MAPK), ERK [phosphorylation of extracellular signal-related kinase (pERK)]. In an olfactory spaced training paradigm, pERK expression in one of the parallel circuits, consisting of γm neurons, was progressively inhibited via dopamine. This inhibition resulted in reduced pERK expression in a postsynaptic GABAergic neuron that, in turn, led to an increase in pERK expression in a dopaminergic neuron specifically in the later session during spaced training, suggesting that disinhibition of the dopaminergic neuron occurs during spaced training. The dopaminergic neuron was significant for gene expression in the different MB parallel circuits consisting of α/ßs neurons for memory consolidation. Our results suggest that the spacing effect-generating neurons and the neurons engaged in memory reside in the distinct MB parallel circuits and that the spacing effect can be a consequence of evolved neural circuit architecture.


Asunto(s)
Drosophila melanogaster/fisiología , Consolidación de la Memoria/fisiología , Cuerpos Pedunculados/fisiología , Red Nerviosa/fisiología , Animales , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Regulación de la Expresión Génica , Fosforilación , Transducción de Señal , Sinapsis/metabolismo
6.
Nat Commun ; 7: 13471, 2016 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-27841260

RESUMEN

Accumulating evidence suggests that transcriptional regulation is required for maintenance of long-term memories (LTMs). Here we characterize global transcriptional and epigenetic changes that occur during LTM storage in the Drosophila mushroom bodies (MBs), structures important for memory. Although LTM formation requires the CREB transcription factor and its coactivator, CBP, subsequent early maintenance requires CREB and a different coactivator, CRTC. Late maintenance becomes CREB independent and instead requires the transcription factor Bx. Bx expression initially depends on CREB/CRTC activity, but later becomes CREB/CRTC independent. The timing of the CREB/CRTC early maintenance phase correlates with the time window for LTM extinction and we identify different subsets of CREB/CRTC target genes that are required for memory maintenance and extinction. Furthermore, we find that prolonging CREB/CRTC-dependent transcription extends the time window for LTM extinction. Our results demonstrate the dynamic nature of stored memory and its regulation by shifting transcription systems in the MBs.


Asunto(s)
Drosophila melanogaster/genética , Regulación de la Expresión Génica , Memoria a Largo Plazo , Cuerpos Pedunculados/metabolismo , Animales , Animales Modificados Genéticamente , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Perfilación de la Expresión Génica/métodos , Ontología de Genes , Neuronas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
PLoS Genet ; 11(8): e1005283, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26263073

RESUMEN

Telomeres, the ends of linear eukaryotic chromosomes, have a specialized chromatin structure that provides a stable chromosomal terminus. In budding yeast Rap1 protein binds to telomeric TG repeat and negatively regulates telomere length. Here we show that binding of multiple Rap1 proteins stimulates DNA double-stranded break (DSB) induction at both telomeric and non-telomeric regions. Consistent with the role of DSB induction, Rap1 stimulates nearby recombination events in a dosage-dependent manner. Rap1 recruits Rif1 and Rif2 to telomeres, but neither Rif1 nor Rif2 is required for DSB induction. Rap1-mediated DSB induction involves replication fork progression but inactivation of checkpoint kinase Mec1 does not affect DSB induction. Rap1 tethering shortens artificially elongated telomeres in parallel with telomerase inhibition, and this telomere shortening does not require homologous recombination. These results suggest that Rap1 contributes to telomere homeostasis by promoting chromosome breakage.


Asunto(s)
Cromosomas Fúngicos/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Unión a Telómeros/metabolismo , Factores de Transcripción/metabolismo , Roturas del ADN de Doble Cadena , Replicación del ADN , ADN de Hongos/genética , ADN de Hongos/metabolismo , Unión Proteica , Saccharomyces cerevisiae/metabolismo , Complejo Shelterina , Homeostasis del Telómero
8.
Neuron ; 84(4): 753-63, 2014 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-25447741

RESUMEN

Several aging phenotypes, including age-related memory impairment (AMI), are thought to be caused by cumulative oxidative damage. In Drosophila, age-related impairments in 1 hr memory can be suppressed by reducing activity of protein kinase A (PKA). However, the mechanism for this effect has been unclear. Here we show that decreasing PKA suppresses AMI by reducing activity of pyruvate carboxylase (PC), a glial metabolic enzyme whose amounts increase upon aging. Increased PC activity causes AMI through a mechanism independent of oxidative damage. Instead, increased PC activity is associated with decreases in D-serine, a glia-derived neuromodulator that regulates NMDA receptor activity. D-serine feeding suppresses both AMI and memory impairment caused by glial overexpression of dPC, indicating that an oxidative stress-independent dysregulation of glial modulation of neuronal activity contributes to AMI in Drosophila.


Asunto(s)
Envejecimiento/fisiología , Proteínas de Drosophila/metabolismo , Trastornos de la Memoria/metabolismo , Memoria/fisiología , Neuroglía/metabolismo , Animales , Animales Modificados Genéticamente , Condicionamiento Clásico/fisiología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Trastornos de la Memoria/genética , Mutación , Piruvato Carboxilasa/genética , Piruvato Carboxilasa/metabolismo , Transducción de Señal/fisiología
9.
Brain Nerve ; 66(1): 41-8, 2014 Jan.
Artículo en Japonés | MEDLINE | ID: mdl-24371130

RESUMEN

\All organisms must obtain nutrition in order to survive and produce their progeny. In the natural environment, however, adequate nutrition or food is not always available. Thus, all organisms are equipped with mechanisms by which their nutritional condition alters their internal activities. In animals, the loss of nutritional intake (fasting) alters not only metabolism, but also behavior in a manner dependent on hormones such as insulin, glucagon, leptin, and ghrelin. As a result, animals are able to maintain their blood sugar level, and are motivated to crave food upon fasting. Moreover, our recent study revealed a novel role of hunger, which facilitates long-term memory (LTM) formation, and its molecular mechanism in the fruit fly, Drosophila. Here, we review the overall effect of fasting, and how fasting affects brain function. I then introduce our finding in which mild fasting facilitates LTM formation, and discuss its biological significance.


Asunto(s)
Encéfalo/metabolismo , Ayuno/fisiología , Hambre/fisiología , Animales , Ingestión de Alimentos/fisiología , Humanos , Insulina/sangre , Memoria/fisiología
10.
Commun Integr Biol ; 6(5): e25152, 2013 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-24265850

RESUMEN

Animals form and store memory, which advantageously adjusts their behavior later on. Although the growing body of evidences suggests the basic mechanisms of memory, it is not clear whether and in which physiological state memory functions can be altered. Here we discuss our recent study that mild fasting facilitates long-term memory (LTM) formation in Drosophila.(1) Canonical LTM in flies is induced by multiple training with rest intervals, and is mediated by a transcription factor, CREB and its binding protein, CBP. However, fasting allows LTM formation (fLTM) only by single-cycle training, in a manner dependent on another CREB binding protein, CRTC. Although it has been controversial, we are convinced that gene expression in a specific neural structure, called mushroom body (MB), is required for LTMs. We also showed data suggesting that reduced insulin signaling during fasting activates CRTC, thereby inducing fLTM formation. These data provides the conceptual advance that flies adapt their mechanisms for LTM formation according to their internal condition, hunger state. Due to limited food resources in the wild, fLTM could be one of the major form of LTM in natural environment. Furthermore, our data also indicate a novel conception that improvement of memory deficit might be achieved by activation of CRTC.

11.
Science ; 339(6118): 443-6, 2013 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-23349290

RESUMEN

Canonical aversive long-term memory (LTM) formation in Drosophila requires multiple spaced trainings, whereas appetitive LTM can be formed after a single training. Appetitive LTM requires fasting prior to training, which increases motivation for food intake. However, we found that fasting facilitated LTM formation in general; aversive LTM formation also occurred after single-cycle training when mild fasting was applied before training. Both fasting-dependent LTM (fLTM) and spaced training-dependent LTM (spLTM) required protein synthesis and cyclic adenosine monophosphate response element-binding protein (CREB) activity. However, spLTM required CREB activity in two neural populations--mushroom body and DAL neurons--whereas fLTM required CREB activity only in mushroom body neurons. fLTM uses the CREB coactivator CRTC, whereas spLTM uses the coactivator CBP. Thus, flies use distinct LTM machinery depending on their hunger state.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/fisiología , Ayuno , Memoria a Largo Plazo , Factores de Transcripción/metabolismo , Animales , Proteína de Unión a CREB/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Cicloheximida/farmacología , Proteínas de Drosophila/biosíntesis , Memoria a Largo Plazo/efectos de los fármacos , Cuerpos Pedunculados/fisiología , Neuronas/fisiología , Inhibidores de la Síntesis de la Proteína/farmacología
12.
J Physiol ; 591(1): 287-302, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23027817

RESUMEN

In Drosophila, the mushroom body (MB) is a critical brain structure for olfactory associative learning. During aversive conditioning, the MBs are thought to associate odour signals, conveyed by projection neurons (PNs) from the antennal lobe (AL), with shock signals conveyed through ascending fibres of the ventral nerve cord (AFV). Although synaptic transmission between AL and MB might play a crucial role for olfactory associative learning, its physiological properties have not been examined directly. Using a cultured Drosophila brain expressing a Ca(2+) indicator in the MBs, we investigated synaptic transmission and plasticity at the AL-MB synapse. Following stimulation with a glass micro-electrode, AL-induced Ca(2+) responses in the MBs were mediated through Drosophila nicotinic acetylcholine receptors (dnAChRs), while AFV-induced Ca(2+) responses were mediated through Drosophila NMDA receptors (dNRs). AL-MB synaptic transmission was enhanced more than 2 h after the simultaneous 'associative-stimulation' of AL and AFV, and such long-term enhancement (LTE) was specifically formed at the AL-MB synapses but not at the AFV-MB synapses. AL-MB LTE was not induced by intense stimulation of the AL alone, and the LTE decays within 60 min after subsequent repetitive AL stimulation. These phenotypes of associativity, input specificity and persistence of AL-MB LTE are highly reminiscent of olfactory memory. Furthermore, similar to olfactory aversive memory, AL-MB LTE formation required activation of the Drosophila D1 dopamine receptor, DopR, along with dnAChR and dNR during associative stimulations. These physiological and genetic analogies indicate that AL-MB LTE might be a relevant cellular model for olfactory memory.


Asunto(s)
Antenas de Artrópodos/fisiología , Cuerpos Pedunculados/fisiología , Transmisión Sináptica/fisiología , Animales , Conducta Animal , Encéfalo/fisiología , Calcio/fisiología , Drosophila , Estimulación Eléctrica , Femenino , Masculino , Olfato/fisiología
13.
Mol Biol Cell ; 23(2): 347-59, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22130795

RESUMEN

Chromosome ends, known as telomeres, have to be distinguished from DNA double-strand breaks that activate DNA damage checkpoints. In budding yeast, the Mre11-Rad50-Xrs2 (MRX) complex associates with DNA ends and promotes checkpoint activation. Rap1 binds to double-stranded telomeric regions and recruits Rif1 and Rif2 to telomeres. Rap1 collaborates with Rif1 and Rif2 and inhibits MRX localization to DNA ends. This Rap1-Rif1-Rif2 function becomes attenuated at shortened telomeres. Here we show that Rap1 acts together with the subtelomere-binding protein Tbf1 and inhibits MRX localization to DNA ends. The placement of a subtelomeric sequence or TTAGGG repeats together with a short telomeric TG repeat sequence inhibits MRX accumulation at nearby DNA ends in a Tbf1-dependent manner. Moreover, tethering of both Tbf1 and Rap1 proteins decreases MRX and Tel1 accumulation at nearby DNA ends. This Tbf1- and Rap1-dependent pathway operates independently of Rif1 or Rif2 function. Depletion of Tbf1 protein stimulates checkpoint activation in cells containing short telomeres but not in cells containing normal-length telomeres. These data support a model in which Tbf1 and Rap1 collaborate to maintain genomic stability of short telomeres.


Asunto(s)
ADN de Hongos/metabolismo , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Telómero/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Datos de Secuencia Molecular , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/genética , Complejo Shelterina , Telómero/genética
14.
Mol Cell ; 33(3): 312-22, 2009 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-19217405

RESUMEN

Chromosome ends, known as telomeres, have to be distinguished from DNA double-strand breaks (DSBs) that activate the DNA-damage checkpoint. In budding yeast, the ATM homolog Tel1 associates preferentially with short telomeres and promotes telomere addition. Here, we show that the telomeric proteins Rif1 and Rif2 attenuate Tel1 recruitment to DNA ends through distinct mechanisms. Both Rif1 and Rif2 inhibit the localization of Tel1, but not the Mre11-Rad50-Xrs2 (MRX) complex, to adjacent DNA ends. Rif1 function is weaker at short telomeric repeats compared with Rif2 function and is partly dependent on Rif2. Rif2 competes with Tel1 for binding to the C terminus of Xrs2. Once Tel1 is delocalized, MRX does not associate efficiently with Rap1-covered DNA ends. These results reveal a mechanism by which telomeric DNA sequences mask DNA ends from Tel1 recognition for the regulation of telomere length.


Asunto(s)
Proteínas Portadoras/metabolismo , ADN de Hongos/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Roturas del ADN de Doble Cadena , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Complejo Shelterina , Telómero/metabolismo , Proteínas de Unión a Telómeros/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
15.
DNA Repair (Amst) ; 8(1): 51-9, 2009 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-18824138

RESUMEN

The Rad6-Rad18 complex mono-ubiquitinates proliferating cell nuclear antigen (PCNA) at the lysine 164 residue after DNA damage and promotes DNA polymerase eta (Poleta)- and Polzeta/Rev1-dependent DNA synthesis. Double-strand breaks (DSBs) of DNA can be repaired by homologous recombination (HR) or non-homologous end-joining (NHEJ), both of which require new DNA synthesis. HO endonuclease introduces DSBs into specific DNA sequences. We have shown that Polzeta and Rev1 localize to HO-induced DSBs in a Mec1-dependent manner and promote Ku-dependent DSB repair. However, Polzeta and Rev1 localize to DSBs independently of PCNA ubiquitination. Here we provide evidence indicating that Rad18-mediated PCNA ubiquitination stimulates DNA synthesis by Polzeta and Rev1 in repair of HO-induced DSBs. Ubiquitination defective PCNA mutation or rad18Delta mutation confers the same DSB repair defect as rev1Delta mutation. Consistent with a role in DSB repair, Rad18 localizes to HO-induced DSBs in a Rad6-dependent manner. Unlike Polzeta or Rev1, Poleta is dispensable for repair of HO-induced DSBs. Ku and DNA ligase IV constitute a central NHEJ pathway. We also show that Polzeta and Rev1 act in the same pathway as DNA ligase IV, suggesting that Polzeta and Rev1 are involved in DNA synthesis during NHEJ. Our results suggest that Polzeta-Rev1 accumulates at regions near DSBs independently of PCNA ubiquitination and then interacts with ubiquitinated PCNA to facilitate DNA synthesis.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN/fisiología , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , ADN Ligasa (ATP) , ADN Ligasas/metabolismo , ADN de Hongos/genética , ADN de Hongos/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo
16.
Mol Biol Cell ; 18(6): 2026-36, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17377065

RESUMEN

Chromosome ends, known as telomeres, have to be distinguished from DNA breaks that activate DNA damage checkpoint. Two large protein kinases, ataxia-teleangiectasia mutated (ATM) and ATM-Rad3-related (ATR), control not only checkpoint activation but also telomere length. In budding yeast, Mec1 and Tel1 correspond to ATR and ATM, respectively. Here, we show that Cdc13-dependent telomere capping attenuates Mec1 association with DNA ends. The telomeric TG repeat sequence inhibits DNA degradation and decreases Mec1 accumulation at the DNA end. The TG-mediated degradation block requires binding of multiple Cdc13 proteins. The Mre11-Rad50-Xrs2 complex and Exo1 contribute to DNA degradation at DNA ends. Although the TG sequence impedes Exo1 association with DNA ends, it allows Mre11 association. Moreover, the TG sequence does not affect Tel1 association with the DNA end. Our results suggest that the Cdc13 telomere cap coordinates Mec1 and Tel1 accumulation rather than simply covering the DNA ends at telomeres.


Asunto(s)
ADN de Hongos/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Telómero/metabolismo , Ciclo Celular/fisiología , ADN de Hongos/genética , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Genes cdc , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Serina-Treonina Quinasas/genética , Proteína de Replicación A , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal/fisiología , Proteínas de Unión a Telómeros/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
17.
Curr Biol ; 16(6): 586-90, 2006 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-16546083

RESUMEN

DNA polymerase zeta (Polzeta) and Rev1 contribute to the bypassing of DNA lesions, termed translesion DNA synthesis (TLS). Polzeta consists of two subunits, one encoded by REV3 (the catalytic subunit) and the other encoded by REV7. Rev1 acts as a deoxycytidyl transferase, inserting dCMP opposite lesions. Polzeta and Rev1 have been shown to operate in the same TLS pathway in the budding yeast Saccharomyces cerevisiae. Here, we show that budding yeast Polzeta and Rev1 form a complex and associate together with double-strand breaks (DSBs). As a component of the Polzeta-Rev1 complex, Rev1 plays a noncatalytic role in the association with DSBs. In budding yeast, the ATR-homolog Mec1 plays a central role in the DNA-damage checkpoint response. We further show that Mec1-dependent phosphorylation promotes the Polzeta-Rev1 association with DSBs. Rev1 association with DSBs requires neither the function of the Rad24 checkpoint-clamp loader nor the Rad6-Rad18-mediated ubiquitination of PCNA. Our results reveal a novel role of Mec1 in the localization of the Polzeta-Rev1 complex to DNA lesions and highlight a linkage of TLS polymerases to the checkpoint response.


Asunto(s)
Daño del ADN , Nucleotidiltransferasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/metabolismo , ADN de Hongos/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteínas Serina-Treonina Quinasas , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Ubiquitina/metabolismo
18.
Mol Biol Cell ; 16(11): 5227-35, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16148046

RESUMEN

The large protein kinases, ataxia-telangiectasia mutated (ATM) and ATM-Rad3-related (ATR), coordinate the cellular response to DNA damage. In budding yeast, ATR homologue Mec1 plays a central role in DNA damage signaling. Mec1 interacts physically with Ddc2 and functions in the form of the Mec1-Ddc2 complex. To identify proteins interacting with the Mec1-Ddc2 complex, we performed a modified two-hybrid screen and isolated RFA1 and RFA2, genes that encode subunits of replication protein A (RPA). Using the two-hybrid system, we found that the extreme C-terminal region of Mec1 is critical for RPA binding. The C-terminal substitution mutation does not affect the Mec1-Ddc2 complex formation, but it does impair the interaction of Mec1 and Ddc2 with RPA as well as their association with DNA lesions. The C-terminal mutation also decreases Mec1 kinase activity. However, the Mec1 kinase-defect by itself does not perturb Mec1 association with sites of DNA damage. We also found that Mec1 and Ddc2 associate with sites of DNA damage in an interdependent manner. Our findings support the model in which Mec1 and Ddc2 localize to sites of DNA damage by interacting with RPA in the form of the Mec1-Ddc2 complex.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Daño del ADN , Proteínas de Unión al ADN/aislamiento & purificación , Proteínas de Unión al ADN/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/aislamiento & purificación , Factores de Transcripción/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas de Ciclo Celular/genética , Péptidos y Proteínas de Señalización Intracelular , Mutación , Proteínas Serina-Treonina Quinasas , Proteína de Replicación A , Saccharomyces cerevisiae , Transducción de Señal , Técnicas del Sistema de Dos Híbridos
19.
Mol Cell Biol ; 24(22): 10016-25, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15509802

RESUMEN

The large protein kinases, ataxia-telangiectasia mutated (ATM) and ATM-Rad3-related (ATR), orchestrate DNA damage checkpoint pathways. In budding yeast, ATM and ATR homologs are encoded by TEL1 and MEC1, respectively. The Mre11 complex consists of two highly related proteins, Mre11 and Rad50, and a third protein, Xrs2 in budding yeast or Nbs1 in mammals. The Mre11 complex controls the ATM/Tel1 signaling pathway in response to double-strand break (DSB) induction. We show here that the Mre11 complex functions together with exonuclease 1 (Exo1) in activation of the Mec1 signaling pathway after DNA damage and replication block. Mec1 controls the checkpoint responses following UV irradiation as well as DSB induction. Correspondingly, the Mre11 complex and Exo1 play an overlapping role in activation of DSB- and UV-induced checkpoints. The Mre11 complex and Exo1 collaborate in producing long single-stranded DNA (ssDNA) tails at DSB ends and promote Mec1 association with the DSBs. The Ddc1-Mec3-Rad17 complex associates with sites of DNA damage and modulates the Mec1 signaling pathway. However, Ddc1 association with DSBs does not require the function of the Mre11 complex and Exo1. Mec1 controls checkpoint responses to stalled DNA replication as well. Accordingly, the Mre11 complex and Exo1 contribute to activation of the replication checkpoint pathway. Our results provide a model in which the Mre11 complex and Exo1 cooperate in generating long ssDNA tracts and thereby facilitate Mec1 association with sites of DNA damage or replication block.


Asunto(s)
Endodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinasa de Punto de Control 2 , Daño del ADN , Replicación del ADN , ADN de Hongos/genética , ADN de Hongos/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas/genética , Exodesoxirribonucleasas/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Péptidos y Proteínas de Señalización Intracelular , Modelos Biológicos , Mutación , Fleomicinas/farmacología , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína de Replicación A , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA