Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Asunto principal
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39192149

RESUMEN

Ethiprole (ETH) is a phenylpyrazole insecticide that is used worldwide as an alternative to fipronil (FIP). Research on the photodegradation of ETH in aquatic environments has been limited compared with that on FIP. In this study, to clarify the photodegradation of ETH in aquatic systems, the photodegradation pathway and products were investigated using liquid chromatography and liquid chromatography-tandem mass spectrometry. We also determined the photochemical half-lives (t1/2) of ETH and its main degradation products. The primary photodegradation pathway was cyclization/dechlorination and hydroxylation/dechlorination of ETH to form the didechlorinated products (benzimidazole of des-chloro-hydroxy-ETH). Some newly identified photodegradation products and analogs of FIP photodegradation products were also detected as minor products. We compared the photodegradation of ETH with that of FIP under the same conditions. Didechlorinated products of ETH and FIP had the highest photostability. However, although the photochemical t1/2 of EHT was 2.7 times that of FIP, the photochemical t1/2 of the didechlorinated product of ETH was approximately one-third that of the didechlorinated product of FIP. This comparison of the photochemical processes of ETH and FIP provides new insight into the persistence and characteristics of both insecticides in the environment.

2.
Environ Sci Pollut Res Int ; 30(38): 89877-89888, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37460889

RESUMEN

Fipronil (FIP) is a phenylpyrazole insecticide that, along with neonicotinoid insecticides, is regularly used worldwide. Photodegradation of FIP in aqueous systems is thought mainly to involve the reaction of desulfinylation to give fipronil desulfinyl (FIP-desulfinyl); however, little is known about further degradation reactions. We investigated FIP photodegradation by analyzing photodegradation products by liquid chromatography and liquid chromatography high-resolution tandem mass spectrometry using an Orbitrap instrument. A wide range of products, including dechlorinated compounds, was detected, and the structures were identified. FIP-desulfinyl has previously been found to be an important and persistent FIP photodegradation product; however, we also found that FIP-desulfinyl was photochemically decomposed to a didechlorinated product via a monodechlorinated product. The main photodegradation pathway was probably similar to that of ethiprole, which has a similar skeleton. The photodegradation rate constant was 22.6 times lower for FIP-desulfinyl (0.00372 min-1) than FIP (0.0839 min-1). The photodegradation rate constant was lower for the newly found didechlorinated product (0.001 min-1 or below) than FIP-desulfinyl, suggesting that the product is persistent in aquatic environments and could be an important indicator of long-term FIP contamination.


Asunto(s)
Insecticidas , Insecticidas/química , Fotólisis , Pirazoles/análisis , Espectrometría de Masas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...