Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Curr Biol ; 34(4): 683-696.e6, 2024 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-38228149

RESUMEN

Intricate branching patterns emerge in internal organs due to the recurrent occurrence of simple deformations in epithelial tissues. During murine lung development, epithelial cells in distal tips of the single tube require fibroblast growth factor (FGF) signals emanating from their surrounding mesenchyme to form repetitive tip bifurcations. However, it remains unknown how the cells employ FGF signaling to convert their behaviors to achieve the recursive branching processes. Here, we show a mechano-chemical regulatory system underlying lung branching morphogenesis, orchestrated by extracellular signal-regulated kinase (ERK) as a downstream driver of FGF signaling. We found that tissue-scale curvature regulated ERK activity in the lung epithelium using two-photon live cell imaging and mechanical perturbations. ERK activation occurs specifically in epithelial tissues exhibiting positive curvature, regardless of whether the change in curvature was attributable to morphogenesis or perturbations. Moreover, ERK activation accelerates actin polymerization preferentially at the apical side of cells, mechanically contributing to the extension of the apical membrane, culminating in a reduction of epithelial tissue curvature. These results indicate the existence of a negative feedback loop between tissue curvature and ERK activity that transcends spatial scales. Our mathematical model confirms that this regulatory mechanism is sufficient to generate the recursive branching processes. Taken together, we propose that ERK orchestrates a curvature feedback loop pivotal to the self-organized patterning of tissues.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular , Pulmón , Ratones , Animales , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Retroalimentación , Factores de Crecimiento de Fibroblastos/metabolismo , Epitelio/metabolismo , Morfogénesis/fisiología , Mesodermo
2.
Curr Opin Cell Biol ; 85: 102249, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37783032

RESUMEN

Extracellular signal-regulated kinase (ERK) plays a crucial role in regulating collective cell behaviors observed in diverse biological phenomena. Emerging studies have shed light on the involvement of the ERK signaling pathway in the reception and generation of mechanical forces, thereby governing local mechanical interactions within multicellular tissues. Although limited in number, studies have provided insights into how ERK-mediated mechanical interactions contribute to multicellular organization. Here we explore the impact of ERK-mediated mechanical interactions on tissue morphogenesis, cell extrusion in homeostasis, and their interplay with the physical microenvironments of the extracellular matrix. We conclude that the coupling system of ERK activity with mechanical forces offers a promising avenue to unravel the emergent collective dynamics underlying tissue organization.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular , Transducción de Señal , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Fosforilación , Sistema de Señalización de MAP Quinasas , Matriz Extracelular/metabolismo
3.
Curr Opin Cell Biol ; 84: 102217, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37574635

RESUMEN

Extracellular signal-regulated kinase (ERK) has been recognized as a critical regulator in various physiological and pathological processes. Extensive research has elucidated the signaling mechanisms governing ERK activation via biochemical regulations with upstream molecules, particularly receptor tyrosine kinases (RTKs). However, recent advances have highlighted the role of mechanical forces in activating the RTK-ERK signaling pathways, thereby opening new avenues of research into mechanochemical interplay in multicellular tissues. Here, we review the force-induced ERK activation in cells and propose possible mechanosensing mechanisms underlying the mechanoresponsive ERK activation. We conclude that mechanical forces are not merely passive factors shaping cells and tissues but also active regulators of cellular signaling pathways controlling collective cell behaviors.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular , Sistema de Señalización de MAP Quinasas , Sistema de Señalización de MAP Quinasas/fisiología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Transducción de Señal/fisiología , Proteínas Tirosina Quinasas Receptoras/metabolismo
4.
Andrology ; 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37415418

RESUMEN

BACKGROUND: The mammalian epididymis is a specialized duct system that serves a critical role in sperm maturation and storage. Its distinctive, highly coiled tissue morphology provides a unique opportunity to investigate the link between form and function in reproductive biology. Although recent genetic studies have identified key genes and signaling pathways involved in the development and physiological functions of the epididymis, there has been limited discussion about the underlying dynamic and mechanical processes that govern these phenomena. AIMS: In this review, we aim to address this gap by examining two key aspects of the epididymis across its developmental and physiological phases. RESULTS AND DISCUSSION: First, we discuss how the complex morphology of the Wolffian/epididymal duct emerges through collective cell dynamics, including duct elongation, cell proliferation, and arrangement during embryonic development. Second, we highlight dynamic aspects of luminal fluid flow in the epididymis, essential for regulating the microenvironment for sperm maturation and motility, and discuss how this phenomenon emerges and interplays with epididymal epithelial cells. CONCLUSION: This review not only aims to summarize current knowledge but also to provide a starting point for further exploration of mechanobiological aspects related to the cellular and extracellular fluid dynamics in the epididymis.

5.
Dev Cell ; 58(14): 1282-1298.e7, 2023 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-37315563

RESUMEN

Cell extrusion is a universal mode of cell removal from tissues, and it plays an important role in regulating cell numbers and eliminating unwanted cells. However, the underlying mechanisms of cell delamination from the cell layer are unclear. Here, we report a conserved execution mechanism of apoptotic cell extrusion. We found extracellular vesicle (EV) formation in extruding mammalian and Drosophila cells at a site opposite to the extrusion direction. Lipid-scramblase-mediated local exposure of phosphatidylserine is responsible for EV formation and is crucial for executing cell extrusion. Inhibition of this process disrupts prompt cell delamination and tissue homeostasis. Although the EV has hallmarks of an apoptotic body, its formation is governed by the mechanism of microvesicle formation. Experimental and mathematical modeling analysis illustrated that EV formation promotes neighboring cells' invasion. This study showed that membrane dynamics play a crucial role in cell exit by connecting the actions of the extruding cell and neighboring cells.


Asunto(s)
Vesículas Extracelulares , Fosfatidilserinas , Animales , Fosfatidilserinas/metabolismo , Apoptosis/fisiología , Drosophila/metabolismo , Endocitosis , Vesículas Extracelulares/metabolismo , Mamíferos/metabolismo
7.
Front Cell Dev Biol ; 10: 1000342, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36313553

RESUMEN

Erection is an essential process which requires the male penis for copulation. This copulatory process depends on the vascular dynamic regulation of the penis. The corpus cavernosum (CC) in the upper (dorsal) part of the penis plays a major role in regulating blood flow inside the penis. When the CC is filled with blood, the sinusoids, including micro-vessels, dilate during erection. The CC is an androgen-dependent organ, and various genital abnormalities including erectile dysfunction (ED) are widely known. Previous studies have shown that androgen deprivation by castration results in significantly decreased smooth muscles of the CC. Experimental works in erectile biology have previously measured intracavernosal penile pressure and mechanical tension. Such reports analyze limited features without assessing the dynamic aspects of the erectile process. In the current study, we established a novel explant system enabling direct visual imaging of the sinusoidal lumen to evaluate the dynamic movement of the cavernous space. To analyze the alternation of sinusoidal spaces, micro-dissected CC explants by patent blue dye injection were incubated and examined for their structural alternations during relaxation/contraction. The dynamic process of relaxation/contraction was analyzed with various external factors administered to the CC. The system enabled the imaging of relaxation/contraction of the lumens of the sinusoids and the collagen-containing tissues. Histological analysis on the explant system also showed the relaxation/contraction. Thus, the system mimics the regulatory process of dynamic relaxation/contraction in the erectile response. The current system also enabled evaluating the erectile pathophysiology. In the current study, the lumen of sinusoids relaxed/contracted in castrated mice similarly with normal mice. These results suggested that the dynamic erectile relaxation/contraction process was similarly retained in castrated mice. However, the system also revealed decreased duration time of erection in castrated mice. The current study is expected to promote further understanding of the pathophysiology of ED, which will be useful for new treatments in the future. Hence, the current system provides unique information to investigate the novel regulations of erectile function, which can provide tools for analyzing the pathology of ED.

8.
Dev Cell ; 57(19): 2290-2304.e7, 2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-36174555

RESUMEN

Upon the initiation of collective cell migration, the cells at the free edge are specified as leader cells; however, the mechanism underlying the leader cell specification remains elusive. Here, we show that lamellipodial extension after the release from mechanical confinement causes sustained extracellular signal-regulated kinase (ERK) activation and underlies the leader cell specification. Live-imaging of Madin-Darby canine kidney (MDCK) cells and mouse epidermis through the use of Förster resonance energy transfer (FRET)-based biosensors showed that leader cells exhibit sustained ERK activation in a hepatocyte growth factor (HGF)-dependent manner. Meanwhile, follower cells exhibit oscillatory ERK activation waves in an epidermal growth factor (EGF) signaling-dependent manner. Lamellipodial extension at the free edge increases the cellular sensitivity to HGF. The HGF-dependent ERK activation, in turn, promotes lamellipodial extension, thereby forming a positive feedback loop between cell extension and ERK activation and specifying the cells at the free edge as the leader cells. Our findings show that the integration of physical and biochemical cues underlies the leader cell specification during collective cell migration.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular , Factor de Crecimiento de Hepatocito , Animales , Movimiento Celular/fisiología , Perros , Factor de Crecimiento Epidérmico/farmacología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Retroalimentación , Ratones
9.
Semin Cell Dev Biol ; 131: 124-133, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35606275

RESUMEN

The development of functional eggs and sperm are critical processes in mammalian development as they ensure successful reproduction and species propagation. While past studies have identified important genes that regulate these processes, the roles of luminal flow and fluid stress in reproductive biology remain less well understood. Here, we discuss recent evidence that support the diverse functions of luminal fluid in oogenesis, spermatogenesis and embryogenesis. We also review emerging techniques that allow for precise quantification and perturbation of tissue hydraulics in female and male reproductive systems, and propose new questions and approaches in this field. We hope this review will provide a useful resource to inspire future research in tissue hydraulics in reproductive biology and diseases.


Asunto(s)
Reproducción , Semen , Animales , Femenino , Masculino , Mamíferos , Oogénesis , Reproducción/genética , Espermatogénesis/genética , Espermatozoides
10.
Reproduction ; 164(1): 9-18, 2022 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-35521906

RESUMEN

Spermatozoa released from Sertoli cells must be transported to the epididymis. However, the mechanism of the luminal flow in seminiferous tubules has remained unclear to date. Therefore, in this study, we investigated luminal flow and movements in the seminiferous tubules by three-dimensional analysis and in vivo imaging. Serial 5-µm-thick mouse testicular sections at 50-µm-intervals were prepared and stained by Periodic Acid-Schiff-hematoxylin. After three-dimensional reconstruction of the seminiferous tubules, the localization of the released spermatozoa and the stages observed in the sections were recorded in each reconstructed tubule. Luminal movements in the seminiferous tubules were observed by in vivo imaging using a fluorescent-reporter mouse and two-photon excitation microscopy system. Spermatozoa without contact to the seminiferous epithelium were not accumulated toward the rete testis. Additionally, such spermatozoa were found on their way not only to the most proximal rete testis but also a more distant rete testis from any stage VIII seminiferous epithelia. In vivo imaging demonstrated that the direction of the flagella of spermatozoa attached to the seminiferous epithelium was repeatedly reversed. The epithelium at the inner curve of the seminiferous tubule was shaken more actively and had fewer spermatozoa attached compared with the epithelium at the outer curve. Our results hence suggest that the luminal flow in the seminiferous tubules is repeatedly reversed and that this physical force helps spermatozoa to be released from Sertoli cells. In brief: Spermatozoa are released from Sertoli cells and flow in the seminiferous tubule to the rete testis. Our results suggest that the luminal flow in the tubules is repeatedly reversed and that this physical force helps spermatozoa release from the Sertoli cells.


Asunto(s)
Microfluídica , Túbulos Seminíferos , Células de Sertoli , Espermatozoides , Animales , Imagenología Tridimensional , Masculino , Ratones , Microfluídica/métodos , Microscopía , Red Testicular/fisiología , Reología/métodos , Epitelio Seminífero/diagnóstico por imagen , Epitelio Seminífero/fisiología , Túbulos Seminíferos/diagnóstico por imagen , Túbulos Seminíferos/fisiología , Células de Sertoli/fisiología , Espermatozoides/fisiología , Testículo/diagnóstico por imagen , Testículo/fisiología
11.
Elife ; 112022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35113018

RESUMEN

Natural killer (NK) cells lyse invading tumor cells to limit metastatic growth in the lung, but how some cancers evade this host protective mechanism to establish a growing lesion is unknown. Here, we have combined ultra-sensitive bioluminescence imaging with intravital two-photon microscopy involving genetically encoded biosensors to examine this question. NK cells eliminated disseminated tumor cells from the lung within 24 hr of arrival, but not thereafter. Intravital dynamic imaging revealed that 50% of NK-tumor cell encounters lead to tumor cell death in the first 4 hr after tumor cell arrival, but after 24 hr of arrival, nearly 100% of the interactions result in the survival of the tumor cell. During this 24-hr period, the probability of ERK activation in NK cells upon encountering the tumor cells was decreased from 68% to 8%, which correlated with the loss of the activating ligand CD155/PVR/Necl5 from the tumor cell surface. Thus, by quantitatively visualizing, the NK-tumor cell interaction at the early stage of metastasis, we have revealed the crucial parameters of NK cell immune surveillance in the lung.


Asunto(s)
Comunicación Celular/inmunología , Vigilancia Inmunológica , Microscopía Intravital/métodos , Células Asesinas Naturales/inmunología , Metástasis de la Neoplasia/inmunología , Células Neoplásicas Circulantes/patología , Animales , Técnicas Biosensibles , Línea Celular Tumoral , Femenino , Proteínas Luminiscentes , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL
12.
Biochem J ; 479(2): 129-143, 2022 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-35050327

RESUMEN

The chemical and mechanical responses of cells via the exchange of information during growth and development result in the formation of biological tissues. Information processing within the cells through the signaling pathways and networks inherent to the constituent cells has been well-studied. However, the cell signaling mechanisms responsible for generating dynamic multicellular responses in developing tissues remain unclear. Here, I review the dynamic multicellular response systems during the development and growth of vertebrate tissues based on the extracellular signal-regulated kinase (ERK) pathway. First, an overview of the function of the ERK signaling network in cells is provided, followed by descriptions of biosensors essential for live imaging of the quantification of ERK activity in tissues. Then adducing four examples, I highlight the contribution of live imaging techniques for studying the involvement of spatio-temporal patterns of ERK activity change in tissue development and growth. In addition, theoretical implications of ERK signaling are also discussed from the viewpoint of dynamic systems. This review might help in understanding ERK-mediated dynamic multicellular responses and tissue morphogenesis.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Transferencia Resonante de Energía de Fluorescencia/métodos , Sistema de Señalización de MAP Quinasas/fisiología , Morfogénesis/fisiología , Proteínas Tirosina Quinasas Receptoras/metabolismo , Animales , Técnicas Biosensibles/métodos , Activación Enzimática/fisiología , Humanos , Cinética , Ratones , Unión Proteica
13.
Endocrinology ; 163(3)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35041746

RESUMEN

Longitudinal bone growth is achieved by a tightly controlled process termed endochondral bone formation. C-type natriuretic peptide (CNP) stimulates endochondral bone formation through binding to its specific receptor, guanylyl cyclase (GC)-B. However, CNP/GC-B signaling dynamics in different stages of endochondral bone formation have not been fully clarified, especially in terms of the interaction between the cyclic guanine monophosphate (cGMP) and cyclic adenosine monophosphate (cAMP) pathways. Here, we demonstrated that CNP activates the cAMP/protein kinase A (PKA) pathway and that this activation contributed to the elongation of the hypertrophic zone in the growth plate. Cells of the chondrogenic line ATDC5 were transfected with Förster resonance energy transfer (FRET)-based cGMP and PKA biosensors. Dual-FRET imaging revealed that CNP increased intracellular cGMP levels and PKA activities in chondrocytes. Further, CNP-induced PKA activation was enhanced following differentiation of ATDC5 cells. Live imaging of the fetal growth plate of transgenic mice, expressing a FRET biosensor for PKA, PKAchu mice, showed that CNP predominantly activates the PKA in the hypertrophic chondrocytes. Additionally, histological analysis of the growth plate of PKAchu mice demonstrated that CNP increased the length of the growth plate, but coadministration of a PKA inhibitor, H89, inhibited the growth-promoting effect of CNP only in the hypertrophic zone. In summary, we revealed that CNP-induced cGMP elevation activated the cAMP/PKA pathway, and clarified that this PKA activation contributed to the bone growth-promoting effect of CNP in hypertrophic chondrocytes. These results provide insights regarding the cross-talk between cGMP and cAMP signaling in endochondral bone formation and in the physiological role of the CNP/GC-B system.


Asunto(s)
Condrocitos/fisiología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Péptido Natriurético Tipo-C/farmacología , Osteogénesis/fisiología , Animales , Diferenciación Celular , Línea Celular , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , GMP Cíclico/metabolismo , Activación Enzimática/efectos de los fármacos , Transferencia Resonante de Energía de Fluorescencia , Placa de Crecimiento/crecimiento & desarrollo , Ratones , Ratones Transgénicos , Osteogénesis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
14.
R Soc Open Sci ; 8(12): 211024, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34909216

RESUMEN

The bending of epithelial tubes is a fundamental process in organ morphogenesis, driven by various multicellular behaviours. The cochlea in the mammalian inner ear is a representative example of spiral tissue architecture where the continuous bending of the duct is a fundamental component of its morphogenetic process. Although the cochlear duct morphogenesis has been studied by genetic approaches extensively, it is still unclear how the cochlear duct morphology is physically formed. Here, we report that nuclear behaviour changes are associated with the curvature of the pseudostratified epithelium during murine cochlear development. Two-photon live-cell imaging reveals that the nuclei shuttle between the luminal and basal edges of the cell is in phase with cell-cycle progression, known as interkinetic nuclear migration, in the flat region of the pseudostratified epithelium. However, the nuclei become stationary on the luminal side following mitosis in the curved region. Mathematical modelling together with perturbation experiments shows that this nuclear stalling facilitates luminal-basal differential growth within the epithelium, suggesting that the nuclear stalling would contribute to the bending of the pseudostratified epithelium during the cochlear duct development. The findings suggest a possible scenario of differential growth which sculpts the tissue shape, driven by collective nuclear dynamics.

15.
Biol Proced Online ; 23(1): 21, 2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34758723

RESUMEN

BACKGROUND: Because of the high frequency of chronic edema formation in the current "aged" society, analyses and detailed observation of post-surgical edema are getting more required. Post-surgical examination of the dynamic vasculature including L.V. (Lymphatic Vasculature) to monitor edema formation has not been efficiently performed. Hence, procedures for investigating such vasculature are essential. By inserting transparent sheet into the cutaneous layer of mouse tails as a novel surgery model (the Tail Edema by Silicone sheet mediated Transparency protocol; TEST), the novel procedures are introduced and analyzed by series of histological analyses including video-based L.V. observation and 3D histological reconstruction of vasculatures in mouse tails. RESULTS: The dynamic generation of post-surgical main and fine (neo) L.V. connective structure during the edematous recovery process was visualized by series of studies with a novel surgery model. Snapshot images taken from live binocular image recording for TEST samples suggested the presence of main and elongating fine (neo) L.V. structure. After the ligation of L.V., the enlargement of main L.V. was confirmed. In the case of light sheet fluorescence microscopy (LSFM) observation, such L.V. connections were also suggested by using transparent 3D samples. Finally, the generation of neo blood vessels particularly in the region adjacent to the silicone sheet and the operated boundary region was suggested in 3D reconstruction images. However, direct detection of elongating fine (neo) L.V. was not suitable for analysis by such LSFM and 3D reconstruction procedures. Thus, such methods utilizing fixed tissues are appropriate for general observation for the operated region including of L.V. CONCLUSIONS: The current surgical procedures and analysis on the post-surgical status are the first case to observe vasculatures in vivo with a transparent sheet. Systematic analyses including the FITC-dextran mediated snap shot images observation suggest the elongation of fine (neo) lymphatic vasculature. Post-surgical analyses including LSFM and 3D histological structural reconstruction, are suitable to reveal the fixed structures of blood and lymphatic vessels formation.

16.
Elife ; 102021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33667159

RESUMEN

A notable example of spiral architecture in organs is the mammalian cochlear duct, where the morphology is critical for hearing function. Genetic studies have revealed necessary signaling molecules, but it remains unclear how cellular dynamics generate elongating, bending, and coiling of the cochlear duct. Here, we show that extracellular signal-regulated kinase (ERK) activation waves control collective cell migration during the murine cochlear duct development using deep tissue live-cell imaging, Förster resonance energy transfer (FRET)-based quantitation, and mathematical modeling. Long-term FRET imaging reveals that helical ERK activation propagates from the apex duct tip concomitant with the reverse multicellular flow on the lateral side of the developing cochlear duct, resulting in advection-based duct elongation. Moreover, model simulations, together with experiments, explain that the oscillatory wave trains of ERK activity and the cell flow are generated by mechanochemical feedback. Our findings propose a regulatory mechanism to coordinate the multicellular behaviors underlying the duct elongation during development.


Asunto(s)
Movimiento Celular , Conducto Coclear/embriología , Sistema de Señalización de MAP Quinasas , Animales , Embrión de Mamíferos , Transferencia Resonante de Energía de Fluorescencia , Ratones Endogámicos ICR , Ratones Transgénicos , Modelos Teóricos , Morfogénesis
17.
Biol Reprod ; 104(4): 875-886, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33511393

RESUMEN

Male penis is required to become erect during copulation. In the upper (dorsal) part of penis, the erectile tissue termed corpus cavernosum (CC) plays fundamental roles for erection by regulating the inner blood flow. When blood flows into the CC, the microvascular complex termed sinusoidal space is reported to expand during erection. A novel in vitro explant system to analyze the dynamic erectile responses during contraction/relaxation is established. The current data show regulatory contraction/relaxation processes induced by phenylephrine (PE) and nitric oxide (NO) donor mimicking dynamic erectile responses by in vitro CC explants. Two-photon excitation microscopy (TPEM) observation shows the synchronous movement of sinusoidal space and the entire CC. By taking advantages of the CC explant system, tadalafil (Cialis) was shown to increase sinusoidal relaxation. Histopathological changes have been generally reported associating with erection in several pathological conditions. Various stressed statuses have been suggested to occur in the erectile responses by previous studies. The current CC explant model enables to analyze such conditions through directly manipulating CC in the repeated contraction/relaxation processes. Expression of oxidative stress marker and contraction-related genes, Hypoxia-inducible factor 1-alpha (Hif1a), glutathione peroxidase 1 (Gpx1), Ras homolog family member A (RhoA), and Rho-associated protein kinase (Rock), was significantly increased in such repeated contraction/relaxation. Altogether, it is suggested that the system is valuable for analyzing structural changes and physiological responses to several regulators in the field of penile medicine.


Asunto(s)
Erección Peniana/fisiología , Pene/citología , Animales , Células Cultivadas , Disfunción Eréctil/patología , Masculino , Ratones , Ratones Endogámicos ICR , Microscopía/métodos , Modelos Biológicos , Técnicas de Cultivo de Órganos , Pene/fisiología , Pene/ultraestructura
18.
Front Cell Dev Biol ; 9: 820391, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35096843

RESUMEN

All living tissues and organs have their respective sizes, critical to various biological functions, such as development, growth, and homeostasis. As tissues and organs generally converge to a certain size, intrinsic regulatory mechanisms may be involved in the maintenance of size regulation. In recent years, important findings regarding size regulation have been obtained from diverse disciplines at the molecular and cellular levels. Here, I briefly review the size regulation of biological tissues from the perspective of control systems. This minireview focuses on how feedback systems engage in tissue size maintenance through the mechanical interactions of constituent cell collectives through intracellular signaling. I introduce a general framework of a feedback control system for tissue size regulation, followed by two examples: maintenance of epithelial tissue volume and epithelial tube diameter. The examples deliver the idea of how cellular mechano-response works for maintaining tissue size.

19.
Front Cell Dev Biol ; 8: 585640, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33195234

RESUMEN

Tracheal cartilage provides architectural integrity to the respiratory airway, and defects in this structure during embryonic development cause severe congenital anomalies. Previous genetic studies have revealed genes that are critical for the development of tracheal cartilage. However, it is still unclear how crosstalk between these proteins regulates tracheal cartilage formation. Here we show a core regulatory network underlying murine tracheal chondrogenesis from embryonic day (E) 12.5 to E15.5, by combining volumetric imaging of fluorescence reporters, inhibitor assays, and mathematical modeling. We focused on SRY-box transcription factor 9 (Sox9) and extracellular signal-regulated kinase (ERK) in the tracheal mesenchyme, and observed a synchronous, inverted U-shaped temporal change in both Sox9 expression and ERK activity with a peak at E14.5, whereas the expression level of downstream cartilage matrix genes, such as collagen II alpha 1 (Col2a1) and aggrecan (Agc1), monotonically increased. Inhibitor assays revealed that the ERK signaling pathway functions as an inhibitory regulator of tracheal cartilage differentiation during this period. These results suggest that expression of the cartilage matrix genes is controlled by an incoherent feedforward loop via Sox9 and ERK, which is supported by a mathematical model. Furthermore, the modeling analysis suggests that a Sox9-ERK incoherent feedforward regulation augments the robustness against the variation of upstream factors. The present study provides a better understanding of the regulatory network underlying the tracheal development and will be helpful for efficient induction of tracheal organoids.

20.
Dev Cell ; 53(6): 646-660.e8, 2020 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-32497487

RESUMEN

During collective migration of epithelial cells, the migration direction is aligned over a tissue-scale expanse. Although the collective cell migration is known to be directed by mechanical forces transmitted via cell-cell junctions, it remains elusive how the intercellular force transmission is coordinated with intracellular biochemical signaling to achieve collective movements. Here, we show that intercellular coupling of extracellular signal-regulated kinase (ERK)-mediated mechanochemical feedback yields long-distance transmission of guidance cues. Mechanical stretch activates ERK through epidermal growth factor receptor (EGFR) activation, and ERK activation triggers cell contraction. The contraction of the activated cell pulls neighboring cells, evoking another round of ERK activation and contraction in the neighbors. Furthermore, anisotropic contraction based on front-rear polarization guarantees unidirectional propagation of ERK activation, and in turn, the ERK activation waves direct multicellular alignment of the polarity, leading to long-range ordered migration. Our findings reveal that mechanical forces mediate intercellular signaling underlying sustained transmission of guidance cues for collective cell migration.


Asunto(s)
Movimiento Celular , Polaridad Celular , Sistema de Señalización de MAP Quinasas , Mecanotransducción Celular , Animales , Perros , Receptores ErbB/metabolismo , Células de Riñón Canino Madin Darby
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...