Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(14)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39062992

RESUMEN

[123I]ß-methyl-p-iodophenyl-pentadecanoic acid ([123I]BMIPP), which is used for nuclear medicine imaging of myocardial fatty acid metabolism, accumulates in cancer cells. However, the mechanism of accumulation remains unknown. Therefore, this study aimed to elucidate the accumulation and accumulation mechanism of [123I]BMIPP in cancer cells. We compared the accumulation of [123I]BMIPP in cancer cells with that of [18F]FDG and found that [123I]BMIPP was a much higher accumulation than [18F]FDG. The accumulation of [123I]BMIPP was evaluated in the presence of sulfosuccinimidyl oleate (SSO), a CD36 inhibitor, and lipofermata, a fatty acid transport protein (FATP) inhibitor, under low-temperature conditions and in the presence of etomoxir, a carnitine palmitoyl transferase I (CPT1) inhibitor. The results showed that [123I]BMIPP accumulation was decreased in the presence of SSO and lipofermata in H441, LS180, and DLD-1 cells, suggesting that FATPs and CD36 are involved in [123I]BMIPP uptake in cancer cells. [123I]BMIPP accumulation in all cancer cell lines was significantly decreased at 4 °C compared to that at 37 °C and increased in the presence of etomoxir in all cancer cell lines, suggesting that the accumulation of [123I]BMIPP in cancer cells is metabolically dependent. In a biological distribution study conducted using tumor-bearing mice transplanted with LS180 cells, [123I]BMIPP highly accumulated in not only LS180 cells but also normal tissues and organs (including blood and muscle). The tumor-to-intestine or large intestine ratios of [123I]BMIPP were similar to those of [18F]FDG, and the tumor-to-large-intestine ratios exceeded 1.0 during 30 min after [123I]BMIPP administration in the in vivo study. [123I]BMIPP is taken up by cancer cells via CD36 and FATP and incorporated into mitochondria via CPT1. Therefore, [123I]BMIPP may be useful for imaging cancers with activated fatty acid metabolism, such as colon cancer. However, the development of novel imaging radiotracers based on the chemical structure analog of [123I]BMIPP is needed.


Asunto(s)
Neoplasias del Colon , Yodobencenos , Animales , Humanos , Neoplasias del Colon/diagnóstico por imagen , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Ratones , Línea Celular Tumoral , Yodobencenos/química , Antígenos CD36/metabolismo , Radiofármacos/química , Radiofármacos/metabolismo , Radioisótopos de Yodo , Ácidos Oléicos/química , Miocardio/metabolismo , Distribución Tisular , Proteínas de Transporte de Ácidos Grasos/metabolismo , Fluorodesoxiglucosa F18/química , Fluorodesoxiglucosa F18/metabolismo , Ácidos Grasos
2.
Nat Commun ; 9(1): 1879, 2018 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-29760466

RESUMEN

Two-photon imaging in behaving animals has revealed neuronal activities related to behavioral and cognitive function at single-cell resolution. However, marmosets have posed a challenge due to limited success in training on motor tasks. Here we report the development of protocols to train head-fixed common marmosets to perform upper-limb movement tasks and simultaneously perform two-photon imaging. After 2-5 months of training sessions, head-fixed marmosets can control a manipulandum to move a cursor to a target on a screen. We conduct two-photon calcium imaging of layer 2/3 neurons in the motor cortex during this motor task performance, and detect task-relevant activity from multiple neurons at cellular and subcellular resolutions. In a two-target reaching task, some neurons show direction-selective activity over the training days. In a short-term force-field adaptation task, some neurons change their activity when the force field is on. Two-photon calcium imaging in behaving marmosets may become a fundamental technique for determining the spatial organization of the cortical dynamics underlying action and cognition.


Asunto(s)
Calcio/fisiología , Cognición/fisiología , Corteza Motora/fisiología , Movimiento/fisiología , Desempeño Psicomotor/fisiología , Extremidad Superior/fisiología , Potenciales de Acción/fisiología , Animales , Mapeo Encefálico , Callithrix , Inmovilización , Masculino , Microscopía de Fluorescencia por Excitación Multifotónica , Imagen Molecular , Corteza Motora/anatomía & histología , Neuronas/citología , Neuronas/fisiología , Análisis de la Célula Individual , Análisis y Desempeño de Tareas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...