Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Biosci Bioeng ; 137(2): 77-84, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38135639

RESUMEN

Polyploid (2n, 3n, and 4n) genomes are known to be unstable in Saccharomyces cerevisiae. Here, we attempted construction of super-polypoid strains (defined as having higher ploidy than tetraploidy) up to 32n by using the matα2-PBT method that we newly developed and investigated their genomic stability. It is known that cell size increases as ploidy increases up to tetraploid. However, unexpectedly, there was no change in the average cell size of the super-polyploid strains compared with tetraploid or pentaploid strains. Smaller sized cells were observed at a rather higher frequency in super-polyploid cell populations compared with those of diploid, triploid and tetraploid strains, suggesting that ploidy reduction in super-polyploid strains occurs quickly at a relatively high frequency. Assuming that ploidy reduction occurs through chromosome loss (or non-disjunction) during mitotic growth, we also estimated the frequency of chromosome loss (or non-disjunction) in various polyploid strains. Our results indicated that the frequency of chromosome loss (or non-disjunction) is drastically increased (10-2-10-3/cells plated) in super-polyploid strains compared with that (10-4-10-5/cells plated) of conventional polyploid (2n-4n) strains. This is the first attempt of construction of super-polyploid strains and investigation of their genomic stability in S. cerevisiae. We believe that the matα2-PBT method will be an invaluable tool for investigating a variety of interesting issues regarding polyploidy and their genomic characterization in eukaryotes.


Asunto(s)
Saccharomyces cerevisiae , Tetraploidía , Humanos , Saccharomyces cerevisiae/genética , Poliploidía , Diploidia , Inestabilidad Genómica/genética
2.
J Biosci Bioeng ; 133(6): 515-523, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35393168

RESUMEN

How ploidy is determined in organisms is an important issue in bioscience. Polyploidy is believed to be relevant to useful traits of domesticated plants and microorganisms. As such, polyploidy is central to many applications in biotechnology. However, studies of polyploidy are poorly advanced because no methodologies to construct desired polyploid have been developed for any organism. Herein we describe the development of a novel breeding technology, matα2-PBT, to generate polyploid strains of Saccharomyces cerevisiae. S. cerevisiae has two mating types, a and α, determined by MATa and MATα gene each of which consists of a1 and a2 and α1 and α2 cistrons. This novel technology exploits an interesting feature of a specific mutation, matα2-102, in the MATα2 gene. Unlike the MATα wild-type strain, which gives a non-mating phenotype when mated with MATa cells, the matα2-102 strain confers an α mating-type to a-type strains when mated with a-type strains. We constructed plasmid with the cloned matα2-102 mutant gene. An a-type cells harboring this plasmid displayed an α mating-type and mated with a-type cells. Because the resultant hybrid displays an α mating-type, it can mate again with a-type cells. By repeating this procedure, we have constructed an isogenic series of haploid to tetraploid of S. cerevisiae. Although whether even higher polyploid than tetraploid can be constructed by using this technology remains to be determined in the future, we believe that it became possible for the first time with matα2-PBT method to investigate whether higher polyploid than tetraploid can be constructed.


Asunto(s)
Saccharomyces cerevisiae , Tetraploidía , Haploidia , Fitomejoramiento , Poliploidía , Saccharomyces cerevisiae/genética
3.
Biochem Biophys Res Commun ; 467(3): 583-8, 2015 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-26417686

RESUMEN

Lateral mesoderm-derived hemogenic endothelial cells are known to originate the definitive hematopoietic lineage in mouse embryogenesis. The developmental process of the definitive hematopoietic lineage can be recapitulated by inducing differentiation of mouse embryonic stem (ES) cells in a co-culture system with OP9 stromal cells. However, the signaling molecules that can modulate the development of the definitive hematopoietic lineage in the OP9 co-culture system have yet to be identified. Here we report that activin A enhanced the hematopoietic potential of endothelial cells derived from ES cells in the OP9 co-culture system. Activin A in combination with OP9 cells augmented development of Flk-1(+) PDGFRα(+) early mesodermal cells and Flk-1(+) PDGFRα(-) lateral mesodermal cells from ES cells. These Flk-1(+) mesodermal cells further differentiated into CD41(+) endothelial cells, which preferentially possessed high hematopoietic potential. Furthermore, Flk-1(+) PDGFRα(+) cells but not Flk-1(+) PDGFRα(-) cells produced hematopoietic progenitors with a bimodal pattern when cultured as an aggregate with OP9 cells. Our results suggest that activin A in combination with OP9 cells facilitates differentiation of ES cells to Flk-1(+) mesodermal cells, which encompass various precursors that separately contribute to the development of hematopoietic lineages.


Asunto(s)
Activinas/farmacología , Células de la Médula Ósea/citología , Células Madre Embrionarias/citología , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Animales , Células de la Médula Ósea/metabolismo , Técnicas de Cocultivo , Células Madre Embrionarias/metabolismo , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA