RESUMEN
The role of gut-brain axis functioning gains growing attention in research on the pathophysiology of major depressive disorders. Here, especially consequences of altered microbiota composition on tryptophan metabolism resulting in altered serotonergic neurotransmission in the central nervous system (CNS) have reached a central position. Previous research, however, mainly focused on either microbiota and peripheral serotonin levels or central serotonergic neurotransmission. The present study aimed to combine the analysis of microbiota composition and central serotonergic activity using a valid neurophysiological indicator. We recruited 19 adult patients with type 1 diabetes and depression (D + D; 7 males), 19 patients with type 1 diabetes (D-; 7 male), and 20 healthy participants (HC; 7 males). Next to the analysis of fecal microbiota regarding α- and ß-diversity, the loudness dependence of auditory evoked potential (LDAEP) was investigated, a non-invasive measurement of central serotonergic activity. High α-diversity was associated with high LDAEP, i.e., low serotonergic activity, in patients with diabetes and additional depression. Furthermore, relative abundances of bacterial families belonging to Bacteroidetes, Proteobacteria and Firmicutes were shown to have an impact on central serotonergic activity. This finding was supported by a tendency indicating an association of central serotonergic activity with the Bacteroidetes-Firmicutes ratio in both patients' groups. Together, this data suggests that the guts' microbiota composition might play an important role in regulating the central serotonergic activity in the brain.
RESUMEN
BACKGROUND: Individuals with type 1 diabetes and those with depression show differences in the composition of the gut microbiome from that of healthy people. However, these differences have not yet been studied in patients with both diseases. Therefore, we compared the gut microbiome of people with type 1 diabetes with or without depression with matched healthy controls. METHODS: A case-control study was conducted in 20 adults with type 1 diabetes (group A), 20 adults with type 1 diabetes and depression (group B), and 20 healthy adults (group C). Gut microbiota composition was determined by sequencing of the V3-V4 region of the bacterial 16S rDNA and alpha and beta diversity was compared between the groups. RESULTS: Groups A and B both showed higher alpha diversity than the healthy control group (P < 0.001) but alpha diversity did not differ significantly between groups A and B. Participants having type 1 diabetes with (P < 0.05) or without comorbid depression (P < 0.001) differed regarding beta diversity from healthy controls but not between each other. Group B (diabetes with depression) had significantly higher abundance of Megaspaera than groups A and C. Both diabetes groups had a higher abundance of Christensenellaceae, Succinivibrionaceae, and Rhodospirillaceae than the healthy group but similar between-group abundances. CONCLUSIONS: While differences in alpha and beta diversity and in some bacterial taxa occurred only between participants with diabetes and healthy controls, specific characteristics regarding the abundance of Megasphaera were observed in people with diabetes and comorbid depression. In summary, the study findings indicate a possible involvement of bacterial groups in depression in people with diabetes. The results suggest replication studies in larger samples to verify these findings.